Design-adaptive Minimax Local Linear Regression for Longitudinal/Clustered Data

Kani CHEN¹, Jianqing FAN² and Zhezhen JIN³

¹Hong Kong University of Science and Technology, ²Princeton University and ³Columbia University

Abstract: This paper studies a weighted local linear regression smoother for longitudinal/clustered data, which takes a similar form as the classical weighted least squares estimate. As a hybrid of the methods of Chen and Jin (2005) and Wang (2003), the proposed local linear smoother maintains the advantages of both methods in computational and theoretical simplicity, variance minimization and bias reduction. Moreover, the proposed smoother is optimal in the sense that it attains the linear minimax efficiency when the within-cluster correlation is correctly specified. In the special case that the joint density of covariates in a cluster exists and is continuous, any working within-cluster correlation would lead to the linear minimax efficiency for the proposed method.

Key words and phrases: Asymptotic bias; Linear minimax efficiency; Generalized estimating equations; Kernel function; Mean squared error; Nonparametric curve estimation.

1. Introduction

Recently, nonparametric curve estimation with clustered data has attracted considerable attention. Because of within-clustered correlation, the extension of nonparametric techniques is not straightforward. Searching for simple and reliable nonparametric estimators becomes an important task.

The efforts begin with an important work of Lin and Carroll (2000). They have shown an interesting result that correctly accounting for within-cluster correlation does not necessarily yield a better estimator when a specific kernel method is used. Welsh, Lin and Carroll (2002) demonstrate further that the spline estimator whose weight is more global can have
a smaller variance than a kernel method, and that the asymptotic variance is smaller when
the within-cluster correlation is correctly specified. Wang (2003) proposes a kernel method
which has the same variance as that of Welsh, Lin and Carroll (2002). Hence, it enjoys
the same merits as that of the spline method when the within-cluster variance is known.
Wang (2003) contains an innovative idea of using the seemingly unrelated observations, even
though it might induce bias and sometimes, as pointed out in Wang (2003), may not be
more accurate than the estimator of Lin and Carroll (2000). Generally, the performance of
the aforementioned estimators is difficult to compare theoretically. In particular, the bias
term of the estimator of Wang (2003) can only be expressed as the solution of a Fredholm
type equation, which cannot be easily evaluated; see equation (5) of Lin, Wang, Welsh and
Carroll (2004). As a result, the mean squared error is hard to quantify. Furthermore, the
comparisons become moot as different estimators have slightly different assumptions. For
example, if the regression function is assumed to have a continuous second derivative at a
point, the bias can be made of order $o(h^2)$ with h being the bandwidth. As a result, one can
transfer it into the variance improvement even without inflating biases. Hence, the uniform
results such as the minimax risk play a crucial role in comparing various methods.

In addition to the aforementioned proposals, Yao, Müller and Wang (2005ab) adapt the
functional data analysis techniques to the analysis of longitudinal data. Welsh, Lin and Car-
roll (2002) provide insightful discussions between the splines and kernel methods, including
locality and efficiency. All these estimators are linear in the response variables. While dif-
ferent approaches have their own merits and deal with different aspects of longitudinal data,
the question arises naturally on the benchmark performance of the linear estimators. While
variance minimization has been the central subject in the related literature, the accuracy of
curve estimation is generally measured by the mean squared error (MSE) at a point or mean
integrated squared error (MISE). An important and widely adopted criterion for studying
the optimality of smoothing methodologies is linear minimax efficiency. It arises naturally
if the linear minimax result of Fan (1992) and Chen (2003) can be extended to the analysis
of longitudinal data. The question is important from both theoretical and methodological points of view, as its answer provides also useful insights to semiparametric models for longitudinal data (Lin and Carroll, 2001, 2006, Lin and Ying, 2001, and Fan and Li, 2004).

Our approach to the aforementioned question is to combine the ideas of Chen and Jin (2005) and Wang (2003) so that it adapts to various designs and achieves minimax efficiency among a proper linear class. In the special case that the joint density of covariates in a cluster exists and is continuous, any working within-cluster correlation would lead to the linear minimax efficiency for the proposed method. The approach results in an effective utilization of the rich theory and practical experience of the classical local polynomial smoothers. For example, thanks to the theoretical developments in the past decades, major issues about local polynomial smoothing such as bandwidth selection, kernel function or weighting scheme selection, model complexity and minimax efficiencies are thoroughly understood (see Fan, 1992; Fan and Gijbels, 1992, 1995, 1996; Ruppert and Wand 1994; Fan, Heckman and Wand, 1995, and Ruppert, 1997; among many others). Whether these existing results can be carried over to clustered data analysis critically depends on how the extension is. In this regard, the proposed method is a natural extension of the classical local polynomial regression smoothing. It has a closed form weighted least squares type expression, and has both computational and theoretical simplicity.

The next section introduces the nonparametric regression model for clustered data and the proposed local linear estimator. Section 3 presents an asymptotic expansion and proves the linear minimax efficiency. Section 4 describes analogous results for generalized linear models. Section 5 presents simulation studies and Section 6 contains some closing remarks.

2. Nonparametric regression model and local linear smoothers

Suppose \((X_{ij}, Y_{ij}), j = 1, \ldots, J_i\), are the \(J_i\) covariate-response pairs of subject \(i\) for \(i = 1, \ldots, n\). The marginal nonparametric regression model assumes that

\[
Y_{ij} = m(X_{ij}) + \epsilon_{ij}, \quad j = 1, \ldots, J_i, \quad i = 1, \ldots, n,
\]
(2.1)
where $m(\cdot)$ is the unknown function to be estimated, ϵ_{ij} is the error term which has conditional mean 0, and finite marginal variances. Let $y_i = (Y_{i1}, ..., Y_{iJ_i})^T$, $x_i = (X_{i1}, ..., X_{iJ_i})^T$, $\epsilon_i = (\epsilon_{i1}, ..., \epsilon_{iJ_i})^T$ and a $J_i \times J_i$ matrix $\Sigma_i = \text{var}\{\epsilon_i|x_i\}$. The cluster sizes J_is are assumed to be bounded. To facilitate presentation, we assume that $J_i \equiv J$ throughout the paper. We also assume that $\{(\epsilon_i, x_i), i \geq 1\}$, are independent and identically distributed and the marginal densities of covariates exist.

The proposed estimate below is a delicate combination of the ideas of Chen and Jin (2005) and Wang (2003). Heuristically, this estimate uses global observations and global variances. The main idea might be illustrated as follows. Suppose $J = 3$ and, for cluster i, (X_{i1}, Y_{i1}) is a local observation to a given point x_0 (i.e., X_{i1} is near x_0) while (X_{i2}, Y_{i2}) and (X_{i3}, Y_{i3}) are not. If the latter two observations are of partial cluster level, i.e., $X_{i2} = X_{i3}$, then $Y_{i2} - Y_{i3}$ has conditional mean 0. Therefore, one can view $Y_{i1} + \lambda(Y_{i2} - Y_{i3})I(X_{i2} = X_{i3})$ as a candidate to estimate $m(x_0)$, where λ can be chosen by minimizing the variance of the estimator. This idea is basically the same as “the use of control variables” in the simulation literature (Ross, 1997), which will be reflected in the local weights (2.3) below.

Let us introduce some notation. The Moore-Penrose generalized inverse of a matrix will be adopted throughout paper. The generalized inverse of any symmetric $J \times J$ matrix A is defined to be a symmetric matrix, denoted still by A^{-1}, such that $AA^{-1}A = A$ and $A^{-1}AA^{-1} = A^{-1}$. Specifically, if we let $A = \Gamma \text{diag}(\lambda_1, ..., \lambda_J)\Gamma^T$ with Γ being an orthonormal matrix, i.e., $\Gamma^T = \Gamma^{-1}$, then, $A^{-1} = \Gamma \text{diag}(1/\lambda_1, ..., 1/\lambda_J)\Gamma^T$, where $1/0$ denotes 0.

Throughout the paper, x_0 is an arbitrary but fixed interior point of the domain of X_{ij}. Let $K(\cdot)$ be a symmetric density function with bounded support which is assumed, without loss of generality, to be $[-1, 1]$. Define $K_h(t) = K(t/h)/h$ where h is a bandwidth. Typical choices of $K(\cdot)$ are, for example, the Epanechnikov kernel $K_0(t) = 0.75(1 - t^2)I(|t| \leq 1)$ and the uniform kernel $K_1(t) = 0.5I(|t| \leq 1)$, where $I(\cdot)$ is the indicator function. Let $K_i = \text{diag}\{K_h(X_{i1} - x_0), ..., K_h(X_{iJ} - x_0)\}$, I be the $J \times J$ identity matrix and 1 be the J-vector with all elements being 1. Let $A_i(j) = \{l : X_{il} = X_{ij}\}$ and $|A_i(j)|$ denote the size
of the set \(A_i(j) \). Define a \(J \times J \) matrix
\[
\bar{1}_i = \begin{pmatrix}
e_{11} & \cdots & e_{1J} \\
\vdots & \ddots & \vdots \\
e_{J1} & \cdots & e_{JJ}
\end{pmatrix}
\]
where
\[
e_{l,j} = \begin{cases}
1/|A_i(j)| & \text{if } l \in A_i(j) \text{ and } |X_{ij} - x_0| > h, \\
0 & \text{otherwise.}
\end{cases}
\]
Observe that \(\bar{1}_i \) is a symmetric \(J \times J \) matrix such that, for any function \(g(\cdot) \) with \(g(t) = 0 \)
for all \(t \in [x_0 - h, x_0 + h] \),
\[
(I - \bar{1}_i)g(x_i) = 0, \quad \bar{1}_i \bar{1}_i = \bar{1}_i \quad \text{and} \quad (I - \bar{1}_i)(I - \bar{1}_i) = I - \bar{1}_i.
\tag{2.2}
\]

Here and throughout the paper, for any function \(g(\cdot) \) defined on real line, we use \(g(x_i) \) to denote \(\{g(X_{i1}), \ldots, g(X_{ij})\}^T \). Set
\[
W_i = K_i((I - \bar{1}_i)V_i(I - \bar{1}_i))^{-1},
\tag{2.3}
\]
where \(V_i \) is the modeled/estimated \(\Sigma_i \), the conditional covariance matrix of the response \(y_i \) given covariates \(x_i \). We assume that \(V_i \) is measurable to the \(\sigma \)-algebra generated by \(x_i \).

When marginal variances are known, the modeling/estimating variance matrix is the same as modeling/estimating the correlation matrix. In other words, \(V_i \) is a working matrix.

The weighted least squares type estimator of \(\{m(x_0), m'(x_0)\}^T \) is defined as
\[
\begin{pmatrix}
\hat{m}(x_0) \\
\hat{m}'(x_0)
\end{pmatrix} = \left(\sum_{i=1}^{n} P_i^T W_i P_i\right)^{-1} \sum_{i=1}^{n} P_i^T W_i y_i,
\tag{2.4}
\]
where
\[
P_i = \begin{pmatrix}
1 & (X_{i1} - x_0) \\
\vdots & \vdots \\
1 & (X_{iJ} - x_0)
\end{pmatrix}_{J \times 2}
\]

In theory, the analysis of the proposed estimator becomes relatively simple since the rich theoretical results established for local polynomial smoothing can be largely carried over; as evidently seen in the propositions and corollaries in Section 3. More importantly, it is easy to compute.

Remark 1. Chen and Jin (2005) uses only local observations (i.e., only \(Y_{i1} \) in the illustration at the second paragraph of this section) and weights them by their variances \(\{I_iV_iI_i\}^{-1} \).
where \(\mathbf{I}_i = \text{diag}\{I(|X_{i1} - x_0| \leq h), \ldots, |X_{iJ} - x_0| \leq h)\} \), and Lin and Carroll (2000) also uses local observations but weights them by the global variances \(\mathbf{V}_i^{-1} \). The estimator of Chen and Jin (2005) is more accurate than that of Lin and Carroll (2000), but less so than the estimator proposed here. On the other hand, Wang (2003) uses global observation and weights them by global variances. With the illustration at the beginning of Section 2, Wang (2003) essentially uses

\[
Y_{i1} + \lambda_1 \{Y_{i2} - \hat{a}(X_{i2})\} + \lambda_2 \{Y_{i3} - \hat{a}(X_{i3})\}
\]

as a datum to estimate \(m(x_0) \), where \(\hat{a}(\cdot) \) is a preliminary estimator of \(m(\cdot) \) and \(\lambda_1 \) and \(\lambda_2 \) are chosen for variance minimization. Such a method can indeed lead to smaller variance. However, as the “control variables” are synthetically created here, the preliminary estimator \(\hat{a}(\cdot) \) might induce large bias. In contrast, the proposed estimator not only takes care of variance minimization but also avoids possible bias inflation.

3. Asymptotic properties and optimality

Let \(\{\Omega_k, 1 \leq k \leq 2^J - 1\} \) be the collections of all the distinct subsets of \(\{1, \ldots, J\} \), except for the empty set. Notice that there are totally \(2^J - 1 \) of them. Let \(B(x, h) \) denote the interval \([x - h, x + h] \). We assume that there exists a \(\delta_0 > 0 \) such that for all \(x \in B(x_0, \delta_0) \) and all \(k = 1, \ldots, 2^J - 1 \),

\[
P[X_{1j} \in B(x, h), \{X_{1j}, j \in \Omega_k\} \text{ are equal, and } X_{1l} \neq X_{1j} \text{ for any } l \notin \Omega_k \text{ and } j \in \Omega_k] = \int_{-h}^{h} f_k(x + t)dt
\]

\[
= P[X_{1j} \in B(x, h) \text{ for all } j \in \Omega_k, \text{ and } X_{1j} \notin B(x, h) \text{ for all } j \notin \Omega_k] + o(h),
\]

for all \(h \in (0, \delta_0) \), where \(f_k(\cdot), 1 \leq k \leq 2^J - 1 \), are nonnegative continuous functions on \(B(x_0, 2\delta_0) \) such that \(\sum_{k=1}^{2^J-1} f_k(t) > 0 \) for all \(t \in B(x_0, 2\delta_0) \).

Remark 2. The above condition is referred to as “the existence of (local) partial density” of the covariates \(\mathbf{x}_i \) at \(x_0 \), which is introduced in Chen and Jin (2005). Heuristically, for every \(k = 1, \ldots, 2^J - 1 \), \(f_k(\cdot) \) can be viewed as a partial density of the covariates \(\{X_{1j}, j \in \Omega_k\} \) at partial cluster level, i.e., \(X_{1j} \) are equal for all \(j \in \Omega_k \). Essentially, the condition ensures that, two covariates take values in a small neighborhood of \(x_0 \) with a negligible chance unless they
are of partial cluster level. This condition features various types of covariates of interest: cluster level covariates, partial cluster level covariates and covariates with joint density. The marginal density of X_{il} is the sum of $f_k(\cdot)$ summing over all Ω_k which contains l, see Chen and Jin (2005) for some special cases.

For every fixed $k = 1, \ldots, 2^J - 1$, let $S_k(h) = \{X_{1j} \in B(x_0, h) \text{ for all } j \in \Omega_k, \text{ and } X_{1j} \notin B(x_0, h) \text{ for all } j \notin \Omega_k \}$ and $S_k(0) = \{X_{1j} = x_0 \text{ for all } j \in \Omega_k, \text{ and } X_{1j} \neq x_0 \text{ for all } j \notin \Omega_k \}$. Define

$$
\xi_k = E\left[1^T \{I - \bar{I}_{10}\} V_1 (I - \bar{I}_{10})^{-1} 1 | S_k(0) \right]
$$

and

$$
\bar{\xi}_k = E\left[1^T \{I - \bar{I}_{10}\} V_1 (I - \bar{I}_{10})^{-1} \Sigma_1 \{I - \bar{I}_{10}\} V_1 (I - \bar{I}_{10})^{-1} 1 | S_k(0) \right],
$$

where \bar{I}_{10} is the limit of \bar{I}_1 as $h \to 0$. Moreover, let ξ_{k0} be defined the same way as ξ_k, except with V_1 replaced by Σ_1. Notice that ξ_k with V_1 replaced by Σ_1 equals to ξ_{k0} by (2.2) and the properties of the generalized inverse. Throughout the paper, we assume that elements of V_1 and Σ_1 are continuous functions of x_1 and the eigenvalues of V_1 and Σ_1 are uniformly bounded, and bounded away from 0.

Proposition 1. Let F_n^X denote the σ-algebra generated by $\{x_i, i = 1, \ldots, n\}$. If the condition of the existence of partial density holds, and $h \to 0, nh \to \infty$ as $n \to \infty$, then the following results hold.

(i). The conditional variance of $\hat{m}(x_0)$ is

$$
\text{var}\{\hat{m}(x_0) | F_n^X\} = \gamma(K) \frac{\sum_{k=1}^{2^j-1} f_k(x_0) \xi_k}{nh \sum_{k=1}^{2^j-1} f_k(x_0) \xi_k^2} \{1 + o_P(1)\}, \quad (3.1)
$$

where $\gamma(K) = \int K^2(t) dt$.

(ii). Assume $m(\cdot)$ is twice continuously differentiable. The conditional bias of $\hat{m}(x_0)$ is

$$
\text{Bias}\{\hat{m}(x_0) | F_n^X\} = \frac{h^2}{2} \gamma_s(K) m''(x_0) + o_P(h^2), \quad (3.2)
$$

where $\gamma_s(K) = \int t^2 K(t) dt$.

The following Corollary presents the answers to the problem of minimization of asymptotic variances or MSE. It shows that the best working covariance matrices are the true ones.
Corollary 1. If the conditions of Proposition 1 hold, then the following results hold.

(1) Given a bandwidth and a kernel, the conditional variance of \(\hat{m}(x_0) \) is minimized when the working covariance matrices equal to the true ones, i.e., \(V_i = \Sigma_i \) for \(i \geq 1 \), and the minimized asymptotic variance is

\[
\gamma(K)/\{nh \sum_{k=1}^{2J-1} f_k(x_0)\xi_{k0}\} \{1 + o_P(1)\}. \tag{3.3}
\]

(2) Given a bandwidth, the uniform kernel with the true covariance matrix minimizes the asymptotic conditional variance.

(3) Suppose \(m''(x_0) \neq 0 \). The conditional asymptotic mean squared error is minimized when the working covariance matrices equal to the true ones, the smooth symmetric nonnegative kernel is the Epanechnikov kernel \(K_0(t) = \frac{3}{4}(1-t^2)I(|t| \leq 1) \) and the bandwidth is

\[
h = \left[\frac{15}{n \{m''(x_0)\}^2 \sum_{k=1}^{2J-1} f_k(x_0)\xi_{k0}} \right]^{1/5}. \tag{3.4}
\]

The minimum asymptotic mean squared error is

\[
\frac{3}{4} 15^{-1/5} \{m''(x_0)\}^{2/5} \left[\frac{1}{n \sum_{k=1}^{2J-1} f_k(x_0)\xi_{k0}} \right]^{4/5}. \tag{3.5}
\]

Remark 3. One can compare the asymptotic variances of the proposed estimator with those of Chen and Jin (2005) and Lin and Carroll (2000) when the working covariance matrices equal to the true ones. In this case, the leading term of the asymptotic variance of the estimator of Chen and Jin (2005) is the same as that given in (3.3) except with \(\xi_{k0} \) replaced by \(E[1^T I_1 \Sigma_1 I_1]^{-1} 1|S_k(0)] \) where \(I_1 = \text{diag}\{I(|X_{11} - x_0| \leq h), ..., I(|X_{1J} - x_0| \leq h)\} \), and that of Lin and Carroll (2000) is the same as that given in (3.1) except with \(\bar{\xi}_k \) replaced by \(E[1^T I_1 \Sigma_1^{-1} I_1 \Sigma_1^{-1} I_1 1|S_k(0)] \) and \(\xi_k \) replaced by \(E[1^T I_1 \Sigma_1^{-1} I_1 1|S_k(0)] \). Because \(1^T \{I - I_1)\Sigma_1 (I - I_1)\}^{-1} 1 \geq 1^T \{I_1 \Sigma_1 I_1\}^{-1} 1 \), it can be shown that, when the working covariance matrices equal to the true ones, the asymptotic variances of the present estimator are smaller than or equal to those of Chen and Jin (2005). Moreover, both estimators have asymptotic
variances smaller than or equal to those of Lin and Carroll (2000). The proof is similar to that of (3.3) and the details are omitted. These three estimators have the same asymptotic bias, while the estimator of Wang (2003) might induce a sizable bias although its asymptotic variances could be smaller.

We next establish the linear minimax efficiency of the proposed local linear estimators, which shows that our proposed estimator can not be improved further by using other linear procedures. Define \(C_2 = \{ m(\cdot) : |m(x) - m(x_0) - m'(x_0)(x - x_0)| \leq C(x - x_0)^2 / 2 \} \) where \(C \) is a fixed positive constant. An estimate \(\hat{S} \) of \(m(x_0) \) is linear if \(\hat{S} = \sum_{i=1}^{n} W_i^T Y_i \) where \(W_i \) is of \(J \) dimension and is measurable to \(F_X^n \). Set

\[
R_{0,\mathcal{L}}(n, C_2) = \min_{\hat{S} \text{ is linear}} \max_{m(\cdot) \in C_2} E[\{ \hat{S} - m(x_0) \}^2 | F_X^n],
\]

which is the linear minimax risk, i.e., the minimax risk of all linear estimators. Let

\[
R_{0,1}^*(n, C_2) = \min_{\hat{m}(x_0) \text{ is defined in (2.4)}} \max_{m(\cdot) \in C_2} E[\{ \hat{m}(x_0) - m(x_0) \}^2 | F_X^n]
\]

be the minimax risk of all local linear smoothers defined in (2.4). Since the local linear smoothers defined in (2.4) are linear estimators, it follows that \(R_{0,1}^*(n, C_2) \geq R_{0,\mathcal{L}}(n, C_2) \).

Proposition 2. Assume that the conditions of Proposition 1 hold. Then,

(i). The estimator \(\hat{m}(x_0) \) defined in (2.4) with the Epanechnikov kernel \(K_0(t) = 3/4(1 - t^2)I(|t| \leq 1) \), \(V_i = \Sigma_i \), and the bandwidth \(h_o = \{ 15/[nC^2 \sum_{k=1}^{2J-1} f_k(x_0)\xi_k] \}^{1/5} \) is a linear minimax efficient estimator, i.e.,

\[
\max_{m(\cdot) \in C_2} E[\{ \hat{m}(x_0) - m(x_0) \}^2 | F_X^n] = R_{0,\mathcal{L}}(n, C_2) \{ 1 + o_P(1) \}.
\]

(ii). Moreover,

\[
R_{0,1}^*(n, C_2) = R_{0,\mathcal{L}}(n, C_2) \{ 1 + o_P(1) \} = 3 \frac{4}{4} 15^{-1/5} C^{2/5} \left\{ n \sum_{k=1}^{2J-1} f_k(x_0)\xi_k \right\}^{-4/5} \{ 1 + o_P(1) \}. \quad (3.6)
\]

Remark 4. The proposed estimator is locally linear minimax efficient. Under the pointwise linear minimax criterion, the estimator is better than all linear estimators, including those

As a remarkable classical result in the theoretical development of the local polynomial smoothing methodology, Fan (1992) established the linear minimax efficiency for the local linear estimates for nonclustered data; see also Chen (2003) for linear minimax efficiency for local polynomial smoothers of all orders. Such a result demonstrates one of the most important superiorities of the local polynomial smoothing over other smoothing methodologies, as far as the pointwise estimation is concerned. It is thus quite appealing whether such a superiority/optimality can be carried over to local polynomial smoothing methodology in the analysis of clustered data. In this regard, Proposition 2 shows that the local linear smoothers defined in (2.4) for clustered data are indeed a proper generalization of the classical local linear smoothers to nonclustered data.

The following corollary illustrates the linear minimax efficiency in some special cases.

Corollary 2. Assume that the conditions of Proposition 1 hold and that the joint density of \((X_{11}, ..., X_{1J})^T\) exists and is continuous. Let \(\sigma_j^2(x_0) = \text{var}(Y_{1j}|X_{1j} = x_0)\) and let \(f_j^*(\cdot)\) be the marginal density of \(X_{1j}, 1 \leq j \leq J\).

(i). The local linear smoother \(\hat{m}(x_0)\) defined in (2.4) is linear minimax efficient when the modelled marginal variances equal to the true ones, the kernel is the Epanechnikov kernel and the bandwidth \(h = [15/\{nC^2 \sum_{j=1}^J f_j^*(x_0)/\sigma_j^2(x_0)\}]^{1/5}\). Moreover,

\[
R^*_{0,1}(n, C_2) = R_{0,\mathcal{L}}(n, C_2)\{1 + o_P(1)\} = \frac{3}{4} 15^{-1/5} C^{2/5} \left[n \sum_{j=1}^J f_j^*(x_0)/\sigma_j^2(x_0) \right]^{-4/5} \{1 + o_P(1)\}.
\]

(ii). (Fan, 1992) In particular, if \(J = 1\), the local linear smoother \(\hat{m}(x_0)\) defined in (2.4) is linear minimax efficient when the kernel is the Epanechnikov kernel and the bandwidth \(h = [15\sigma_1^2(x_0)/\{nC^2 f_1^*(x_0)\}]^{1/5}\). Moreover,

\[
R^*_{0,1}(n, C_2) = R_{0,\mathcal{L}}(n, C_2)\{1 + o_P(1)\} = \frac{3}{4} 15^{-1/5} C^{2/5} \left[\frac{\sigma_1^2(x_0)}{nf_1^*(x_0)} \right]^{4/5} \{1 + o_P(1)\}.
\]
Corollary 2 addresses the minimax efficiency under the existence of the joint density. In this case, part (i) shows that only the correct specification of the conditional marginal variances is needed. Specification of the within-cluster correlation, correct or incorrect, is irrelevant to the accuracy of curve estimation. In other words, any working correlation matrix will lead to the same accuracy of curve estimation. Specifically, Suppose \(V_i = \Phi_i C_i \Phi_i \) where \(\Phi_i \) is the diagonal matrix containing the marginal variances of \(y_i \) and \(C_i \) is the working correlation matrix. As long as \(\Phi_i \) is correctly specified, no matter what working correlation matrix is used, the variance of the curve estimate is minimized. This is mainly due to the minimax formulation and the assumption of existence of joint density that excludes the possibility of any two covariates being equal with positive probability. This is different from the method of Lin and Carroll (2000). In Lin and Carroll’s (2000) method, only working independence correlation would lead to such asymptotic accuracy, and any other working correlation, correct or incorrect, would have adverse effect on curve estimation. Part (ii) addresses the issue for nonclustered data, which is a classical result of the linear minimax efficiency of local linear smoothers, initially given in Fan (1992). Notice that, in the case of nonclustered data \((J = 1)\), modelling of the conditional variance of \(E(Y_{11}|X_{11} = x) \) is not necessary because of its continuity in \(x \).

Corollary 3. If the conditions of Proposition 1 hold and that there exists a \(\delta > 0 \) such that, \(P(X_{11} = \cdots = X_{1J} | |X_{1j} - x_0| \leq \delta) = 1, 1 \leq j \leq J \) with \(f(x_0) \) being the (common) marginal density of \(X_{1j} \), \(1 \leq j \leq J \), at \(x_0 \), then the local linear smoother \(\hat{m}(x_0) \) defined in (2.4) is linear minimax efficient when the working covariance matrices equal to the true ones, the kernel is the Epanechnikov kernel and the bandwidth \(h = [15/\{nC^2 f(x_0)\xi_*\}]^{1/5} \).

Moreover,

\[
R_{0,1}(n, C_2) = R_{0,L}(n, C_2)\{1 + o_P(1)\} = \frac{3}{4} 15^{-1/5} C^{2/5} \left[n f(x_0) \xi_* \right]^{-4/5} \{1 + o_P(1)\},
\]

where \(\xi_* = E(1^T \Sigma^{-1}_j 1 | X_{11} = \cdots = X_{1J} = x_0) \).

Many more classical results established for local linear smoothing for non-clustered data.
Remark 5. The aforementioned linear minimax risk is defined for estimating \(m(x_0) \), the regression function at a point. It is also possible to define the linear minimax risk under the mean integrated square loss:

\[
R_L(n, C) = \min_{\hat{S} \text{ is linear}} \max_{m(\cdot) \in C} E \left[\| \hat{S} - m \|_w^2 | \mathcal{F}_n \right],
\]

where \(\| a(x) \|_w^2 = \int a(x)^2 w(x) dx \) is a weighted \(L_2 \)-norm for a given weight function \(w(\cdot) \) on the support of the marginal density of \(X \) and \(C \) is a function class such as \(C = \{ \| m'' \|_w \leq C \} \). For such a global loss, it will be interesting to study whether the Wang’s estimator will have minimax efficiency gain.

4. Generalized linear models

Suppose the responses \(Y_{ik} \) depend on covariates \(X_{ik} \) via following generalized linear models,

\[
E(Y_{ik} | X_{ik} = x) = u\{ \theta(x) \}, \quad \text{for } k = 1, ..., J,
\]

where \(u(\cdot) \) is a known smooth link function, and \(\theta(\cdot) \) is the unknown function to be estimated. If \(\theta(\cdot) \) is assumed to belong to a parametric family, the parameters have clear interpretation and can be estimated by the parametric GEE method. In the nonparametric setting, \(\theta(\cdot) \) is arbitrary except with certain differentiability. Consequently, the above regression model can be equivalently formulated as model (2.1) by letting \(m(\cdot) = u\{ \theta(\cdot) \} \).

The estimation of \(m(\cdot) \) by \(\hat{m}(\cdot) \) defined in (2.4) has been addressed in preceding sections. If \(u(\cdot) \) is the identity function, the estimation of \(\theta(\cdot) \) is the same as that of \(m(\cdot) \). In general, the estimator of \(\theta(\cdot) \) is naturally obtained by \(\hat{\theta}(\cdot) = u^{-1}\{ \hat{m}(\cdot) \} \), where \(\hat{m}(\cdot) \) is defined in (2.4). Unlike in the parametric setting, in the nonparametric setting it might be \(u\{ \theta(\cdot) \} \) rather than \(\theta(\cdot) \) that is of virtual interest. However, the function \(\theta(\cdot) \) can have an advantage of no constraints on its range as in the logistic regression problem.

Proposition 1 can be used to obtain asymptotic properties for \(\hat{\theta}(x_0) \). By Taylor expansion,

\[
\hat{\theta}(x_0) - \theta(x_0) = \frac{1}{u'(\theta(x_0))} \{ \hat{m}(x_0) - m(x_0) \} - \frac{u''\{ \theta(x_0) \}}{2[u'(\theta(x_0))]^3} \{ \hat{m}(x_0) - m(x_0) \}^2 \{ 1 + o_P(1) \}.
\]
Under some regularity conditions, one can show that,

\[
\text{Abias}\{\hat{\theta}(x_0)\} = \left[\frac{1}{u'(\theta(x_0))} \text{bias}\{\hat{m}(x_0)|F_n^X\} - \frac{u''(\theta(x_0))}{2[u'(\theta(x_0))]^3} \text{var}\{\hat{m}(x_0)|F_n^X\}\right] \{1 + o_P(1)\},
\]

\[
\text{Avar}\{\hat{\theta}(x_0)\} = [u'(\theta(x_0))]^{-2} \text{var}\{\hat{m}(x_0)|F_n^X\} \{1 + o_P(1)\},
\]

and

\[
\text{AMSE}\{\hat{\theta}(x_0)\} = [u'(\theta(x_0))]^{-2} \text{MSE}\{\hat{m}(x_0)|F_n^X\} \{1 + o_P(1)\},
\]

where Abias, Avar and AMSE stand for the asymptotic bias, asymptotic variance and asymptotic MSE respectively. Applying Proposition 1, one can obtain a closed from expression of the bias, variance and MSE of \(\hat{\theta}(x_0)\). Corollary 1 can also be carried over. In particular, the MSE of \(\hat{\theta}(x_0)\) is minimized when the modeled variances equal to the true ones, the bandwidth is the same as that given in (3.4), the kernel is the Epanechnikov kernel. The minimized MSE is the same as that in (3.5) except with a multiplier \([u'(\theta(x_0))]^{-2}\). Optimalities analogous to Proposition 2 can also be established for \(\hat{\theta}(x_0)\) in a similar fashion.

An appealing alternative is to extend our idea along with the local quasi-likelihood method in Fan, Heckman and Wand (1995). We will not pursue this issue further in the present paper.

5. Simulation study

Simulation studies are carried out to evaluate the performance of the proposed linear smoother. The data are generated from the model

\[
y_{ij} = m(x_{ij}) + \epsilon_{ij}, \quad j = 1, 2, 3, 4, \quad i = 1, \ldots, n
\]

where \(m(x) = 1 - 60x \exp\{-20x^2\}\), \(x_{i1}\) and \(x_{i3}\) are independently generated from \(U[-1, 1]\) distribution and \(x_{i2} = x_{i1}\) and \(x_{i4} = x_{i3}\), and errors \((\epsilon_{i1}, \epsilon_{i2}, \epsilon_{i3}, \epsilon_{i4})\) are generated from multivariate normal distribution with mean being 0, correlation being 0.6 and marginal variances being 0.04, 0.09, 0.01 and 0.16, respectively.

The sample size \(n\) is 150 and the number of simulations is 1000. The curve estimate \(\hat{m}_0(\cdot)\) is computed on the grid points \(x_j = -0.8 + 0.016j, \ j = 0, \ldots, 100\), with various global fixed bandwidths. Six different estimation methods are used: the proposed local linear smoother; the local linear method of Chen and Jin (2005); the working independence method of Lin

For each of the grid points, the bias and variance were computed based on the 1000 simulation runs. Also, the integrated squared error D_i was obtained for the ith simulation, where $D_i = \int_{-0.8}^{0.8} (m(x) - \hat{m}_i(x))^2 dx$ ($i = 1, ..., 1000$) with the integration replaced by summation over $x_j = -0.08 + 0.016j$ ($j = 0, ..., 100$). Table 1 summarizes the results. In the table, ‘Bias’ stands for the average of the absolute values of biases over the 101 grid points, ‘SD’ stands for the average of the sample standard deviations over the 101 grid points and ‘MISE’ stands for the average of integrated squared errors. The table also reports the relative values of MISE for the four other estimators to that for the proposed estimator: a ratio greater than 1 indicates that the new estimator performs better.

INSERT TABLE 1

All MISE ratios of the estimators of Chen and Jin (2005) and Lin and Carroll (2003) are greater than 1, indicating that the proposed method outperforms the two methods. When the bandwidth is 0.02 or 0.03, the MISE ratios show that Wang’s method outperforms the proposed method. This is due to the fact that when the bandwidth is small, the biases in the preliminary estimates in Wang’s method are small and her method utilizes more correlated data than ours. However, the proposed method outperforms Wang’s method as the bandwidth increases. This suggests when bandwidth is large, the effect of bias in Wang’s method becomes more significant and contributes more to the MSE. It is interesting to notice that there is no clear winner between the proposed method and the estimation method of Lin and Carroll (2006).

6. Concluding remarks

This paper proposes a weighted least squares type of local linear smoother for clustered data which improves that of Chen and Jin (2005) and Lin and Carroll (2000) and achieves
linear minimax efficiency. The key idea is the proper use of the working covariance matrices so that the resulting estimator has minimal asymptotic variance without bringing in additional bias. The estimator also has theoretical and computational simplicity as that of Chen and Jin (2005). When a non-identity link function is used to relate the mean response to a function of covariates, the method discussed in Section 4 retains the simplicity of estimation.

This paper only discusses local linear smoothers. The estimator can obviously be extended to local polynomial smoothers of arbitrary orders. However, optimal properties such as linear minimax efficiency seem to be technically nontrivial to establish.

Acknowledgement

Chen’s research was supported partially by a Hong Kong RGC grant, Fan’s research was supported partially by NIH grant R01 GM072611 and NSF FRG grant DMS-0354223, and Jin’s research was supported partially by the NSF career award DMS-0134431. We thank the associate editor and a referee for their helpful comments.

Appendix: proofs

A.1. Proof of Proposition 1

(i). Let $A_n = \sum_{i=1}^{n} P_i^T W_i P_i$ and $B_n = \sum_{i=1}^{n} P_i^T W_i \Sigma_i W_i^T P_i$, it is easy to see that

$$\text{var} \left\{ \left(\hat{m}(x_0) \right) \left(\hat{m}'(x_0) \right) \right\} | \mathcal{F}_n = A_n^{-1} B_n (A_n^T)^{-1}.$$

For $0 \leq m, l \leq 1$, let $a_{m+1, l+1}$ denote the $(m+1, l+1)$-th element of A_n. Let j_k be an element of Ω_k. Recall that $\xi_k = E[1^T \{(I - \bar{1}_{10})V_i(I - \bar{1}_{10})\}^{-1} 1| S_k(0)]$. With the condition of the existence of partial density at x_0 and change of variables, one can show that

$$E(a_{m+1, l+1}) = \sum_{i=1}^{n} E \left[\{ (X_{i1} - x_0)^m, \ldots, (X_{ij} - x_0)^m \} W_i \{(X_{i1} - x_0)^l, \ldots, (X_{ij} - x_0)^l \}^T \right]$$

$$= n \sum_{k=1}^{2^j-1} E \left[(X_{jk} - x_0)^{m+l} K_h(X_{jk} - x_0) I \{ S_k(h) \} \right]$$

$$\times E \left[1^T \{(I - \bar{1}_{10})V_i(I - \bar{1}_{10})\}^{-1} 1| S_k(0) \right] \{ 1 + o(1) \}$$

$$= n \sum_{k=1}^{2^j-1} \xi_k \int (x - x_0)^{m+l} f_k(x) \frac{1}{h} K\left(\frac{x - x_0}{h} \right) dx \{ 1 + o(1) \}$$

15
\[= nh^{m+1} \sum_{k=1}^{2^j-1} f_k(x_0)\xi_k \left\{ \int t^{m+l} K(t) dt + o(1) \right\}. \]

It is analogous to show that \(\{\text{var}(a_{m+1,l+1})\}^{1/2} = o(nh^{m+l}) \). Then,

\[a_{m+1,l+1} = nh^{m+l} \sum_{k=1}^{2^j-1} f_k(x_0)\xi_k \left\{ \int t^{m+l} K(t) dt + o_P(1) \right\}, \]

since \(a_{m+1,l+1} = E(a_{m+1,l+1}) + O_P[\{\text{var}(a_{m+1,l+1})\}^{1/2}] \). Therefore,

\[A_n = n\{ \sum_{k=1}^{2^j-1} f_k(x_0)\xi_k \left(\begin{array}{cc} 1 & 0 \\ 0 & h^2 \int t^2 K(t) dt \end{array} \right) \} \{1 + o_P(1)\}, \]

by the symmetry of \(K(\cdot) \). With a similar calculation, it follows that

\[B_n = nh^{-1} \{ \sum_{k=1}^{2^j-1} f_k(x_0)\xi_k \left(\begin{array}{cc} \int t K^2(t) dt & h \int t K^2(t) dt \\ h \int t K^2(t) dt & h^2 \int t^2 K^2(t) dt \end{array} \right) \} \{1 + o_P(1)\}. \]

Therefore,

\[\text{var}\{ \hat{m}(x_0)|\mathcal{F}_n^X \} = (1 \ 0) A_n^{-1} B_n A_n^{-1} \left(\begin{array}{c} 1 \\
\end{array} \right) = \frac{\gamma(K) \sum_{k=1}^{2^j-1} f_k(x_0)\xi_k}{nh[\sum_{k=1}^{2^j-1} f_k(x_0)\xi_k]^2} \{1 + o_P(1)\}. \]

(ii). By the Taylor expansion, the conditional bias of \(\hat{\beta} \) is

\[E\left\{ \left(\hat{m}(x_0) \right) \mid \mathcal{F}_n^X \right\} - \left(m(x_0) \right) = A_n^{-1} \sum_{i=1}^{n} P_i^T W_i \left\{ m(x_i) - P_i \left(\begin{array}{c} m(x_0) \\
m'(x_0) \end{array} \right) \right\} \]

\[= A_n^{-1} \sum_{i=1}^{n} P_i^T W_i \{(X_i - x_0)^2, \cdots, (X_i - x_0)^2\} \{m''(x_0)/2 + o_P(1)\}. \]

Similar to the asymptotic expansion of \(A_n \), one can also show that

\[\sum_{i=1}^{n} P_i^T W_i \{(X_i - x_0)^2, \cdots, (X_i - x_0)^2\} = nh^2 \sum_{k=1}^{2^j-1} \left\{ f_k(x_0)\xi_k \left\{ \int t^2 K(t) dt \right\} \right\} + o_P(1). \]

Then, after some algebra, it can be shown that the conditional bias is

\[E\{ \hat{m}(x_0)|\mathcal{F}_n^X \} - m(x_0) = \frac{h^2 m''(x_0)}{2} \gamma_s(K) + o_P(h^2). \]

A.2. Proof of Corollary 1

To show that, for any given bandwidth \(h \) and kernel \(K \), the asymptotic variance is minimized when the modelled correlation equals to the true correlation, it suffices to show
that \(\sum_{k=1}^{2^J-1} f_k(x_0)\tilde{\xi}_k/ \{\sum_{k=1}^{2^J-1} f_k(x_0)\xi_k\}^2 \) is minimized when \(V_1 = \Sigma_1 \). Recall that \(I = (1, \ldots, 1)^T \). Let \(b = \{(I - \tilde{I}_{10})\Sigma_1(I - \tilde{I}_{10})\}^{1/2}\{(I - \tilde{I}_{10})V_1(I - \tilde{I}_{10})\}^{-1}1 \). Observe that \\
\[\sum_{k=1}^{2^J-1} f_k(x_0)\tilde{\xi}_k = \sum_{k=1}^{2^J-1} f_k(x_0)E\{b^Tb|S_k(0)\} \]
and \\
\[\sum_{k=1}^{2^J-1} f_k(x_0)\xi_k = \sum_{k=1}^{2^J-1} f_k(x_0)E\{1^T\{(I - \tilde{I}_{10})\Sigma_1(I - \tilde{I}_{10})\}^{-1/2}b|S_k(0)\} \]. Then, \\
\[\frac{\sum_{k=1}^{2^J-1} f_k(x_0)\tilde{\xi}_k}{\sum_{k=1}^{2^J-1} f_k(x_0)\xi_k} \geq \frac{\sum_{k=1}^{2^J-1} f_k(x_0)\xi_k}{\sum_{k=1}^{2^J-1} f_k(x_0)\xi_k}^{-1} \]
by the Cauchy-Schwartz inequality, in which the equality holds when \\
\(b = \{(I - \tilde{I}_{10})\Sigma_1(I - \tilde{I}_{10})\}^{1/2}1 \). This is certainly implied by \(V_1 = \Sigma_1 \). This proves that the true variance always leads to the minimum asymptotic variance for any given bandwidth and kernel function.

For any given bandwidth, the variance minimizing kernel is the uniform kernel simply because \(\gamma(K) \) is minimized when \(K \) is the uniform kernel. This is parallel to the same classical result for local polynomial smoothers for nonclustered data; see Fan and Gijbels (1996, p.75). The next claim about minimization of MSE also follows from the same classical result; see e.g. Fan (1992). We omit the details.

A.3. Proof of Proposition 2.

Part (i) follows from part (ii) by applying Corollary 1. We only show the proof of part (ii), which consists of four steps.

Step 1. Following Corollary 1, it can be shown via a calculation similar to (A.4) that
\[R_{0,1}^*(n, C_2) \leq \frac{3}{4} \frac{15^{-1/5}C^{2/5}}{\sqrt{\frac{1}{n\sum_{k=1}^{2^J-1} \xi_k f_k(x_0)}}} \frac{1}{4/5} \{1 + o_P(1)\}. \]
(A.1)

Since \(R_{0,1}^*(n, C_2) \geq R_{0,L}(n, C_2) \), we have
\[R_{0,L}(n, C_2) \leq \frac{3}{4} \frac{15^{-1/5}C^{2/5}}{\sqrt{\frac{1}{n\sum_{k=1}^{2^J-1} \xi_k f_k(x_0)}}} \frac{1}{4/5} \{1 + o_P(1)\}. \]
(A.2)

Step 2. Consider linear estimates of form \(\sum_{i=1}^n W_i^T y_i \), where \(W_i = (w_{i1}, \ldots, w_{ij})^T \) is \(F_n \)-measurable and
\[\mathbb{I}_W W_i = 0. \]
(A.3)

Throughout the proof, \(h \) is chosen so that it converges to 0 slowly enough, e.g., \(h = 1/\log(n) \). Define a restricted linear minimax risk as
\[R_{res}(n, C_2) = \min_{\text{linear estimates satisfying (A.3)}} \max_{m(\cdot) \in C_2} E \left[\left\{ \sum_{i=1}^n W_i^T y_i - m(x_0) \right\}^2 | F_n \right]. \]
Notice that (A.3) ensures \(W_i^T \Sigma_i W_i = W_i^T (I - \bar{1}) \Sigma_i (I - \bar{1}) W_i \). Consequently,

\[
E \left[\left\{ \sum_{i=1}^{n} W_i^T y_i - m(x_0) \right\}^2 | \mathcal{F}_n \right] \geq \frac{m(x_0)^2}{1 + \sum_{i=1}^{n} a_i},
\]

where \(a_i = m(x_i)^T \{ (I - \bar{1}) \Sigma_i (I - \bar{1}) \}^{-1} m(x_i) \). Then,

\[
R_{\text{res}}(n, C_2) \geq \max_{m(\cdot) \in C_2} \frac{m(x_0)^2}{1 + \sum_{i=1}^{n} a_i}.
\]

In (A.4), the equality holds when

\[
W_i = \frac{m(x_0)}{1 + a_i} \{ (I - \bar{1}) \Sigma_i (I - \bar{1}) \}^{-1} m(x_i).
\]

It follows from (2.2) that \(W_i \) given in (A.6) indeed satisfies (A.3).

Step 3. Set \(m(x) = Ch_o^2/2[1 - \{(x - x_0)/h_o\}^2]_+ = 2/3Ch_o^2K_0\{(x - x_0)/h_o\} \). Then, \(h_o < h \) for large \(n \). Using the condition of the existence of partial density, we can write

\[
E \left(\sum_{i=1}^{n} a_i \right) = n \sum_{k=1}^{2^j-1} \int_{x_0-h}^{x_0-h} f_k(x) m^2(x) E[I^T \{(I - \bar{1})_10 \Sigma_i (I - \bar{1})_10 \}^{-1} 1|S_k(0)] dx \{ 1 + o(1) \}
\]

\[
= n \sum_{k=1}^{2^j-1} \xi_{k0} \int_{x_0-h_o}^{x_0-h_o} f_k(x) m^2(x) dx \{ 1 + o(1) \}
\]

\[
= n \sum_{k=1}^{2^j-1} \xi_{k0} f_k(x_0) \int_{-1}^{1} \frac{4}{9} C^2 h_o^4 K^2(t) h_o dt \{ 1 + o(1) \}
\]

\[
= n \frac{4}{15} C^2 h_o^5 \sum_{k=1}^{2^j-1} \xi_{k0} f_k(x_0) \{ 1 + o(1) \}.
\]

It also can be shown that \(\sum_{i=1}^{n} a_i = E(\sum_{i=1}^{n} a_i) \{ 1 + o_P(1) \} \). By straightforward calculation,

\[
\frac{m^2(x_0)}{1 + 4nC^2 h_o^5 \sum_{k=1}^{2^j-1} \xi_{k0} f_k(x_0)/15} = \frac{C^2 h_o^4}{20} \{ 1 + o(1) \} = \frac{3}{4} \frac{15^{-1/5} C^2/5}{\left[n \sum_{k=1}^{2^j-1} \xi_{k0} f_k(x_0) \right]^{4/5}} \{ 1 + o(1) \}.
\]

It then follows from (A.5) that

\[
R_{\text{res}}(n, C_2) \geq \frac{3}{4} \frac{15^{-1/5} C^2/5}{\left[n \sum_{k=1}^{2^j-1} \xi_{k0} f_k(x_0) \right]^{4/5}} \{ 1 + o_P(1) \}.
\]

Step 4. We show that \(R_{\text{res}}(n, C_2) = R_{0,C}(n, C_2) \{ 1 + o_P(1) \} \). It is clear that \(R_{\text{res}}(n, C_2) \geq R_{0,C}(n, C_2) \). If a linear estimate \(\sum_{i=1}^{n} W_i^T y_i = \sum_{i=1}^{n} \sum_{j=1}^{J} w_{ij} X_{ij} \) is linear minimax efficient, then it can be shown that

\[
\sum_{i=1}^{n} \sum_{j=1}^{J} w_{ij} = 1, \quad \sum_{i=1}^{n} \sum_{j=1}^{J} w_{ij}(X_{ij} - x_0) = 0 \quad \text{and} \quad \sup_{1 \leq i \leq n} \sup_{1 \leq j \leq J} |w_{ij}| = o_P(n^{-2/5}).
\]
For any \(m(\cdot) \in \mathcal{C}_2 \), let \(r_m(t) = m(t) - m(x_0) - m'(x_0)(t - x_0) \). Consider function \(m_*(x) = C/2(x - x_0)^2I(|x - x_0| > h)\sgn\{\sum_{i=1}^n \sum_{j=i}^I w_{ij}I(x = X_{ij})\} \) where \(\sgn(\cdot) \) is the sign function. Clearly \(m_*(\cdot) \in \mathcal{C}_2 \) and \(\bar{I}_i m_*(x_i) = m_*(x_i) \). Thus, with probability 1,

\[
\max_{m(\cdot) \in \mathcal{C}_2} E[\{\sum_{i=1}^n W_i^T y_i - m(x_0)\}^2 | \mathcal{F}_n^X] \geq \sum_{i=1}^n W_i^T m_*(x_i)^2 \geq \frac{C^2 h^4}{4} \sum_{i=1}^n |W_i^T \bar{I}_i| 1^2.
\]

Therefore, \(\sum_{i=1}^n |W_i^T \bar{I}_i| 1^2 = O_P(n^{-4/5}) \). This and (A.8) ensure that

\[
\sum_{i=1}^n W_{i,1,2} = \sum_{i=1}^n W_{i,1}^T \Sigma_i \bar{I}_i W_i \leq o_P(n^{-2/5}) \sum_{i=1}^n 1^T |\bar{I}_i W_i| = o_P(n^{-4/5}).
\]

where \(W_{i,1} = (I - \bar{I}_i)W_i \) and \(W_{i,2} = \bar{I}_i W_i \). For every given \(m(\cdot) \), the bias of \(\sum_{i=1}^n W_{i,1}^T r_m(x_i) \) is irrelevant to the value of \(r_m(\cdot) \) defined outside the interval \([x_0 - h, x_0 + h]\) by (2.2). Therefore,

\[
\max_{m(\cdot) \in \mathcal{C}_2} E[\{\sum_{i=1}^n W_i^T y_i - m(x_0)\}^2 | \mathcal{F}_n^X] = \max_{m(\cdot) \in \mathcal{C}_2} \{\sum_{i=1}^n W_i^T r_m(x_i)\}^2 + \sum_{i=1}^n W_i^T \Sigma_i W_i
\]

\[
\geq \max_{m(\cdot) \in \mathcal{C}_2} \left[\{\sum_{i=1}^n W_{i,1}^T r_m(x_i)\}^2 + 2 \sum_{i=1}^n W_{i,1}^T r_m(x_i) \sum_{i=1}^n W_{i,2}^T r_m(x_i) + \sum_{i=1}^n W_{i,2}^T r_m(x_i)\}^2 \right]
\]

\[
+ \sum_{i=1}^n W_{i,1}^T \Sigma_i W_{i,1} + 2 \sum_{i=1}^n W_{i,1}^T \Sigma_i W_{i,2} + \sum_{i=1}^n W_{i,2}^T \Sigma_i W_{i,2}
\]

\[
\geq \max_{m(\cdot) \in \mathcal{C}_2} \{\sum_{i=1}^n W_{i,1}^T r_m(x_i)\}^2 + \sum_{i=1}^n W_{i,1}^T \Sigma_i W_{i,1} + o_P(n^{-4/5})
\]

\[
\geq R_{res}(n, \mathcal{C}_2) + o_P(n^{-4/5}).
\]

It then follows from (A.7) that

\[
R_{0,\mathcal{C}}(n, \mathcal{C}_2) \geq \frac{3}{4} 15^{-1/5} C^{2/5} \left[\frac{1}{n \sum_{k=1}^{2^I-1} 1/\xi_{k0} f_k(x_0)} \right]^{4/5} \{1 + o_P(1)\}.
\]

The desired result (3.6) follows from (A.1), (A.2) and (A.9). The proof is complete.

A.4. Proofs of Corollaries 2 and 3

Corollaries 2 and 3 are two special cases of Proposition 2. We omit the details of the proof.

References

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Email: makchen@ust.hk

Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544

Email: jqfan@princeton.edu

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032

Email: zjin@biostat.columbia.edu
Table 1. *Comparison of methods based on 1000 simulation results*

<table>
<thead>
<tr>
<th>h</th>
<th>Proposed estimator</th>
<th>Chen and Jin’s estimator</th>
<th>Lin-Carroll’s estimator</th>
<th>Wang’s first-step estimator after iterations</th>
<th>Lin-Carroll’s 2006 estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bias</td>
<td>SD</td>
<td>RMISE</td>
<td>Bias</td>
<td>SD</td>
</tr>
<tr>
<td>0.02</td>
<td>0.027</td>
<td>0.863</td>
<td>25.17</td>
<td>0.036</td>
<td>1.217</td>
</tr>
<tr>
<td>0.03</td>
<td>0.012</td>
<td>0.093</td>
<td>0.045</td>
<td>0.012</td>
<td>0.109</td>
</tr>
<tr>
<td>0.04</td>
<td>0.021</td>
<td>0.046</td>
<td>0.005</td>
<td>0.021</td>
<td>0.049</td>
</tr>
<tr>
<td>0.05</td>
<td>0.033</td>
<td>0.040</td>
<td>0.007</td>
<td>0.033</td>
<td>0.042</td>
</tr>
<tr>
<td>0.06</td>
<td>0.047</td>
<td>0.038</td>
<td>0.011</td>
<td>0.048</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Bias: average of absolute values of biases at 101 grid points
SD: average of standard deviations at 101 grid points
MISE$_1$: average of integrated squared errors D_i ($i = 1, \cdots, 1000$) for proposed method
RMISE: MISE as a multiple of MISE$_1$