Chapter 12

Logistic Regression and Machine Learning

12.1 Introduction to Machine Learning

- scalable statistical algorithms that combine

 ★ expertise from statistics on how to extract information from data with

 ★ computational ideas that enable efficient implementation on large data sets.

Data revolution: Enormous datasets are routinely collected

- Biological Sci.: Genomics, genetics, neuroscience, medicine
• **Natural Sci.**: Astronomy, earth sciences, meteorology.

• **Engineering**: Machine learning, surveil. videos, social media

• **Social Sci**: Economics, finance, marketing, managements.

Characterize many contemporary scientific and decision problems.
Example 12.1 *Supervised learning — classification*

Labels are provided. Document classification, disease classification, face recognition.

Feature Space \mathcal{X}
- Words in a document
- Cell properties

Label Space \mathcal{Y}
- “Sports”
- “News”
- “Science”
- “Anemic cell”
- “Healthy cell”

Figure 12.1: Some supervised learning problems
Example 12.2 Unsupervised learning — clustering

No labels provided: Social network and animal phylogenetic tree

Example 12.3 Gene expression and autism

Over 60K gene expression profiles (Next Generation Sequencing) are measured among 104 samples: 47 autisms and 57 healthy controls, along with gender, brain region, age, and sites. Of interest is to find the genes that are associated with autism.
12.2 Logistic regression

Modeling binary data: Suppose that latent variable (e.g. severity of disease such as autism and cancers) follows

\[Z = \beta_0^* + \beta_1 X_1 + \cdots + \beta_k X_k + \varepsilon = \beta_0^* + \beta^T X + \varepsilon, \]

where \(\beta = (\beta_1, \cdots, \beta_k)^T \) and \(X = (X_1, \cdots, X_k)^T \). Instead of observing \(Z \), we get \(Y = I(Z < c) \) for a threshold \(c \).

Conditional probability: if \(\varepsilon \sim G \)

\[
P(Y = 1|X = x^*) = P(\beta_0^* + x^T \beta + \varepsilon < c)
= G(c - \beta_0^* - x^T \beta)
= F(\beta_0 + x^T \beta)
\]
where $F(x) = G(-x)$ and $\beta_0 = \beta_0^* - c$.

Link function: $F^{-1}(\cdot)$ is called link. Commonly used examples:

- **logit link**: $F(x) = \frac{\exp(x)}{1 + \exp(x)}$, $F^{-1}(p) = \log \frac{p}{1-p}$ — logit function

 $$P(Y = 1 | X = x^*) = \frac{\exp(\beta_0 + x^* T \beta)}{1 + \exp(\beta_0 + x^* T \beta)},$$

- **probit link**: $F(x) = \Phi(x)$, normal cdf.

Observed data: $\{(x_i, y_i)\}_{i=1}^n$, $y_i = \text{binary}$.

pmf for Bernoulli: $P(Y = y) = \begin{cases} p & \text{if } y = 1 \\ 1 - p & \text{if } y = 0 \end{cases} = pq^{1-y}$.

MLE: Find β_0 and β to maximize

$$L(\beta_0, \beta) = \prod_{i=1}^{n} p_i^{y_i} q_i^{1-y_i}$$

where $p_i = F(\beta_0 + x_i^T \beta)$. Its log-likelihood is

$$\ell(\beta_0, \beta) = \sum_{i=1}^{n} y_i \log(p_i/q_i) + \log q_i$$

Logistic regression: $p_i = \frac{\exp(\beta_0 + x_i \beta)}{1 + \exp(\beta_0 + x_i \beta)}$ and $q_i = \frac{1}{1 + \exp(\beta_0 + x_i \beta)}$ (logit link). Find β_0 and β to maximize

$$\ell(\beta_0, \beta) = \sum_{i=1}^{n} y_i (\beta_0 + x_i \beta) - \log(1 + \exp(\beta_0 + x_i \beta))$$.
Solution: β_0 and $\hat{\beta} = (\hat{\beta}_1, \cdots, \hat{\beta}_k)'$, by convex optimization.

Predicted probability: $P(Y = 1|x = x^*) = F(\hat{\beta}_0 + x^*\hat{\beta})$.

Example 12.4 Sex classification using heights

User profile data for 59,946 San Francisco OkCupid users (a free online dating website) from June 2012 are recorded.

```r
logistic.model <- glm(is.female ~ height, family=binomial, data=profiles)
summary(logistic.model)
```

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------|----------|------------|---------|----------|
| (Intercept) | 44.9999 | 1.1374 | 39.6 | <2e-16 *** |
| height | -0.6705 | 0.0169 | -39.8 | <2e-16 *** |

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8075.1 on 5994 degrees of freedom
Residual deviance: 4460.2 on 5993 degrees of freedom
AIC: 4464

Number of Fisher Scoring iterations: 6
Ex. 12.3 (cont.). We select top 5 differently expressed by using two-sample t-test and fit logistic regression along with other variables.

```r
> autism = read.csv("autism.csv")  #reading the data
> aut.glm = glm(Autism ~ . , family=binomial, data=autism)
> #fitting the model
> summary(aut.glm)  #summarize the fit
```

Call:
```
glm(formula = Autism ~ ., family = binomial, data = autism)
```

Deviance Residuals:
Min 1Q Median 3Q Max
-2.4105 -0.5834 -0.1647 0.4863 2.5613

Coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------|----------|------------|---------|----------|
| (Intercept) | -1.33425 | 2.56463 | -0.520 | 0.602889 |
| GenderM | 0.14585 | 0.73279 | 0.199 | 0.842233 |
| Age | -0.05945 | 0.02871 | -2.071 | 0.038365 *|
| SiteM | -3.43602 | 0.95416 | -3.601 | 0.000317 ***|
| Reg | 1.17445 | 0.57933 | 2.027 | 0.042636 *|
| Gene1 | -0.10237 | 0.14148 | -0.724 | 0.469332 |
| Gene2 | 0.43250 | 0.32752 | 1.321 | 0.186658 |
| Gene3 | 0.78675 | 0.26275 | 2.994 | 0.002751 **|
| Gene5 | -0.66137 | 0.30426 | -2.174 | 0.029729 *|
| NA. | 0.08676 | 0.26373 | 0.329 | 0.742165 |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 143.212 on 103 degrees of freedom
Residual deviance: 74.617 on 94 degrees of freedom
AIC: 94.617
We now select model by using stepwise procedure \texttt{step(aut.glm)}. It selects the model:

\begin{verbatim}
> aut.glm1 = glm(Autism ~ Age + Site + Reg + Gene3 + Gene5,
> family=binomial, data=autism)
> summary(aut.glm1) #summarize the fit
\end{verbatim}

\begin{verbatim}
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.01125 2.12388 0.005 0.995773
 Age -0.06377 0.02804 -2.275 0.022928 *
 SiteM -3.31923 0.85777 -3.870 0.000109 ***
Reg 1.05110 0.52212 2.013 0.044099 *
Gene3 0.89643 0.22623 3.962 7.42e-05 ***
Gene5 -0.51391 0.18172 -2.828 0.004684 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
\end{verbatim}

12.3 Classification

\textbf{Classification}: Given $X = x$, classify it as “class 1” if
\[P(Y = 1|X = x) = F(\hat{\beta}_0 + x^T\hat{\beta}) > 0.5 \]

Example 12.5 Logistic regression and linear decision boundary

Classifier is the same as \(I(\hat{\beta}_0 + x^T\hat{\beta} > 0) \).

Misclassification rate: Given \(n^* \) test data, it is defined by

\[
\frac{1}{n^*} \sum_{i=1}^{n^*} I(\hat{y}_i \neq y_i^*) \quad \text{— Hamming distance}
\]

Ex. 12.3 (cont.). We now use the second model to classify.

```r
> logit = predict(aut.glm1)  # fitted log(odd-ratios)
> prob = exp(logit)/(1+exp(logit))  # fitted probability
> classification = (prob > 0.5)  # classification

### equivalent to directly using (logit > 0)
```
> mean(autism[,1] != classification) #compute misclassification rate
[1] 0.1346154

Bayes classifier: \(f_B(x) = \arg\max_y P(Y = y|X = x) \).

Likelihood and prior: By Bayes formula,

\[
P(Y = y|X = x) = \frac{P(X = x|Y = y) p(Y = y)}{P(X = x)}
\]

Optimal choice depends only on the numerator.

Risk: For a classifier \(f(X) \), its risk is \(R(f) = P(f(X) \neq Y) \)

Example 12.6 *Fisher Discriminants: Normal populations*

Assume \(P(Y = 0) = 0.5 \) and for population \(y = 0 \) or 1,

\[
P(X = x|Y = y) = \frac{1}{\sqrt{(2\pi)^d|\Sigma_y|}} \exp\left(-\frac{1}{2}(x - \mu_y)^T \Sigma_y^{-1}(x - \mu_y)\right).
\]
Bayes risk
\[R(f^*) \]

Bayes risk

Figure 12.4: Illustration of Bayes classifier and its associated risk when \(P(Y = 0) = 0.5 \). It compares the likelihood ratio. Green data is classified as green on the left.

Then Bayes rule is the log-likelihood ratio: class 0 if

\[
(x - \mu_0)^T \Sigma_0^{-1} (x - \mu_0) + \log |\Sigma_0| \leq (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) + \log |\Sigma_1|.
\]

This is a **nearest centroid** classifier.

When \(\Sigma_0 = \Sigma_1 \), it becomes

\[
(\mu_1 - \mu_0)^T \Sigma^{-1} (x - (\mu_0 + \mu_1)/2) < 0.
\]
Figure 12.5: Illustration of decision boundary by nearest centroid classifier. Case 1 ($\Sigma_0 = \Sigma_1$): a linear decision boundary. Case 2 ($\Sigma_0 \neq \Sigma_1$): Quadratic decision boundary.

12.4 Support Vector Machine

Relabel y as ± 1. Let $f(x)$ be a classifier with decision $\text{sgn}(f(x))$.

Zero-one Loss: $L(f(x), y) = I(y \ast f(x) \leq 0)$

Logit regression: $\log \frac{p}{q} = f(x)$. Then,

$$L(f(x), y) = \log(1 + e^{-y*f(x)})$$
Support Vector Machine:
Use hinge loss $L(f, y) = (1 - y \cdot f)^+$

Estimation: Find β_0 and β to minimize the empirical loss

$$\sum_i L(f(x_i), y_i) = \sum_i L(\beta_0 + x_i^T \beta, y_i)$$

12.5 Clustering

k-means algorithm: Find clusters $\{C_j\}$ and centroids $\{c_j\}$ to min

$$\sum_{j=1}^k \sum_{i \in C_j} \|x_i - c_j\|^2$$
★ Given k cluster centers $\{c_j\}_{j=1}^k$, classify each data into k clusters by the nearest centroid.

★ Given k clusters, update cluster centers by taking their averages.

★ iterate until convergence.

> library(datasets) # get the data set "iris"
> iris[1:3,] # first 3 cases of the data
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
> irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)
 # 20 random initial choices of centroids, using variables 3 and 4
> irisCluster # show the results
K-means clustering with 3 clusters of sizes 50, 52, 48

Cluster means:

<table>
<thead>
<tr>
<th></th>
<th>Petal.Length</th>
<th>Petal.Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.462000</td>
<td>0.246000</td>
</tr>
<tr>
<td>2</td>
<td>4.269231</td>
<td>1.342308</td>
</tr>
<tr>
<td>3</td>
<td>5.595833</td>
<td>2.037500</td>
</tr>
</tbody>
</table>

Clustering vector:

[1] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3

Within cluster sum of squares by cluster:

(between_SS / total_SS = 94.3 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size"
[8] "iter" "ifault"

> table(irisCluster$cluster, iris$Species)

<table>
<thead>
<tr>
<th></th>
<th>setosa</th>
<th>versicolor</th>
<th>virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>46</td>
</tr>
</tbody>
</table>
Hierarchical Clustering:

★ Initially, each object is assigned to its own cluster.

★ at each stage joining the two most similar clusters, continuing until there is just a single cluster.

★ at each stage distances between clusters are recomputed by the LanceWilliams dissimilarity update formula.

> clusters <- hclust(dist(iris[, 3:4]))
> plot(clusters,col="blue")
Cluster Dendrogram

dist(iris[, 3:4])
hclust (", "complete")

Figure 12.6: Hierarchical clustering by using iris data.