Chapter 11

Multiple and Nonlinear Regression

11.1 Introduction

Aim of this chapter:

♠ To extend the techniques to multiple variables / factors.
♠ To check adequacy of a fitted model.
♠ Model building and prediction
Purpose of multiple regression:

— Study association between dependent and independent variables
— Screen irrelevant and select useful variables
— Prediction

Example 11.1 Hong Kong Environmental Data Set.

Interest: Study the association between levels of pollutants and number of daily total hospital admissions for circulatory and respiratory problems.

— Dependent variable (Y) = Daily number of hospital admissions
— Collected covariates = {
level of pollutant Sulphur Dioxide X_1 (in $\mu g/m^3$),
level of pollutant Nitrogen Dioxide X_2 (in $\mu g/m^3$)
level of respirable suspended particles X_3 (in $\mu g/m^3$)
Ozone level X_4
Temperature X_5 (in $^\circ C$)
Humidity (X_6, in percent)
time X_7 (season, confounding factor),

....

<table>
<thead>
<tr>
<th>year</th>
<th>month</th>
<th>day</th>
<th>s_mean</th>
<th>n_mean</th>
<th>tm_mean</th>
<th>o8_mean</th>
<th>tp_mean</th>
<th>h_mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>1</td>
<td>1</td>
<td>21.30</td>
<td>74.69</td>
<td>142.82</td>
<td>47.56</td>
<td>15.53</td>
<td>69.00</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>2</td>
<td>12.35</td>
<td>64.81</td>
<td>99.00</td>
<td>48.25</td>
<td>16.94</td>
<td>77.14</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>3</td>
<td>44.53</td>
<td>90.17</td>
<td>74.00</td>
<td>8.92</td>
<td>19.50</td>
<td>79.43</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>4</td>
<td>26.41</td>
<td>78.79</td>
<td>71.67</td>
<td>45.47</td>
<td>18.51</td>
<td>76.00</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>5</td>
<td>20.99</td>
<td>74.97</td>
<td>85.33</td>
<td>46.31</td>
<td>18.83</td>
<td>76.00</td>
</tr>
</tbody>
</table>

.................................
Example 11.2 Female labor supply in East Germany. (1991)

Goal: To study factors that affect the female labor supply.

A typical data entry reads like:

<table>
<thead>
<tr>
<th>working hours</th>
<th>age</th>
<th>hourly earning</th>
<th>Job Pres</th>
<th>Year Edu</th>
<th>Mon Rent earning</th>
<th>husband earning</th>
<th>Child</th>
<th>Unempl. Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>36</td>
<td>8.269</td>
<td>55</td>
<td>12</td>
<td>1010</td>
<td>2800</td>
<td>1</td>
<td>16.8</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>6.059</td>
<td>29</td>
<td>10</td>
<td>268</td>
<td>2500</td>
<td>1</td>
<td>16.8</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>11.5</td>
<td>34</td>
<td>12</td>
<td>605</td>
<td>3226</td>
<td>1</td>
<td>16.8</td>
</tr>
<tr>
<td>43</td>
<td>30</td>
<td>9.85</td>
<td>44</td>
<td>12</td>
<td>800</td>
<td>1800</td>
<td>1</td>
<td>16.8</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>15.16</td>
<td>60</td>
<td>13</td>
<td>280</td>
<td>2040</td>
<td>1</td>
<td>16.8</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>7.843</td>
<td>34</td>
<td>12</td>
<td>250</td>
<td>3200</td>
<td>0</td>
<td>16.8</td>
</tr>
</tbody>
</table>

.................

Data Format:
Response independent variables

<table>
<thead>
<tr>
<th>case number</th>
<th>Y</th>
<th>X₁</th>
<th>X₂</th>
<th>…</th>
<th>Xₖ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>y₁</td>
<td>x₁₁</td>
<td>x₁₂</td>
<td>…</td>
<td>x₁ₖ</td>
</tr>
<tr>
<td>2</td>
<td>y₂</td>
<td>x₂₂</td>
<td>x₂₃</td>
<td>…</td>
<td>x₂ₖ</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>yₙ</td>
<td>xₙ₁</td>
<td>xₙ₂</td>
<td>…</td>
<td>xₙₖ</td>
</tr>
</tbody>
</table>

Multiple regression model:

\[Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \varepsilon, \]

where \(\varepsilon \) is the random error with \(E\varepsilon = 0 \) and \(\text{var}(\varepsilon) = \sigma^2 \).

Group mean: Average response for the group with covariates \(\mathbf{x^*} = (x_1^*, \cdots, x_k^*) \) is \(E(Y|X = \mathbf{x^*}) = \beta_0 + \beta_1 x_1^* + \cdots + \beta_k x_k^* \).

Group SD: \(\text{var}(Y|X = \mathbf{x^*}) = \sigma \).
11.2 Parameter Estimation

Data: According to the multiple regression model,

\[y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \varepsilon_i, \quad i = 1, \ldots, n. \]

Least-squares method: Find \(\beta \) to minimize

\[\text{SSE}(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \cdots - \beta_k x_{ik})^2. \]

MLE: This is also the MLE if \(\varepsilon_i \sim_{i.i.d.} N(0, \sigma^2) \).

Solution: Easy to obtain by calculus and linear algebra and widely implemented on computers. Let \(\hat{\beta} = (\hat{\beta}_0, \cdots, \hat{\beta}_k)' \) be the solution.

Important statistical quantities.
♣ Fitted values: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots + \hat{\beta}_k x_{ik}$.

♣ Residuals: $\hat{\varepsilon}_i = y_i - \hat{y}_i$.

♣ Residual sum of squares: $SSE = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$.

♣ Coefficient of determination (multiple R^2): $R^2 = 1 - \frac{SSE}{S_{yy}}$, which is equal to the sum of squares reduction due to regression (SS_{reg}) divided by total sum of squares ($SST=S_{yy}$).

♣ Adjusted multiple R^2:

$$R^2_a = 1 - \frac{n - 1}{n - (k + 1)} \frac{SSE}{S_{yy}} = \frac{(n - 1)R^2}{n - (k + 1)} - \frac{k}{n - (k + 1)},$$

adjusting for the number of parameters (that is, variables). Used in variable selection.
Est of σ^2: $\hat{\sigma}^2 = \frac{SSE}{(n - k - 1)}$, which is the MLE with adj.

Example 11.3 Predicting macroeconomic variables

129 macroeconomic time series, updated by Michael McCraken of Fed. St. Louis, is available on the class web. We focus on the variables:

```r
macro = read.csv("macro2016-10.csv",header=T)  #read data
month = macro[,1]  #Months of Data
Month = strptime(month, "%m/%d/%Y")  #convert to POSIXlt (a date class)
Unrate = macro[,25]  #Unemploy rates
IndPro = macro[,7]  #Industrial Production Index
HouSta = macro[,49]  #House start
PCE = macro[,4]  #Real Personal Consumption
M2Real = macro[,67]  #Real M2 Money Stock
FedFund= macro[,79]  #Fed Funds Rate
CPI = macro[,107]  #Consumer Price Index
SPY = macro[,75]  # S&P 500 index
```

These 8 time series are depicted in Fig. 11.1.
Since several variables are increasing, we take their log-differences:

\[Y_t = \text{Unrate}_t, \quad X_{t,1} = \text{Unrate}_{t-1}, \quad X_{t,2} = \Delta \log(\text{IndPro}_t), \quad X_{t,3} = \Delta \log(\text{PCE}_t) = \log(\text{PCE}_t) - \log(\text{PCE}_{t-1}), \]
\[X_{t,4} = \Delta \log(\text{M2Real}_t), \quad X_{t,5} = \Delta \log(\text{CPI}_t), \quad X_{t,6} = \Delta \log(\text{SPY}_t), \quad X_{t,7} = \text{HouSta}_t, \quad X_{t,8} = \text{FedFund}_t \]

creating variables

\[
\text{DIndPro} = \text{diff}(\log(\text{IndPro})) \quad \# \text{ changes of IndPro}
\]
DPCE = diff(log(PCE)) # changes of PCE
DM2 = diff(log(M2Real)) # chances of M2 stock
DCPI = diff(log(CPI)) # changes of CPI
DSPY = diff(log(SPY)) # log-returns of SP500

n = length(Unrate)
Y = Unrate[3:n] # future unemployrate
X1 = cbind(DIndPro,DPCE, DM2, DCPI, DSPY) # present data
X2 = cbind(HouSta,FedFund)
X = cbind(Unrate[2:(n-1)], X1[1:(n-2),], X2[2:(n-1),])
colnames(X) = list("lag1", "DIndPro", "DPCE", "DM2",
 "DCPI", "DSPY", "HouSta", "FedFund")
 # give covariates names

Learning/training and testing sets: Take the last 10 years data as testing set and remaining as training set.

n = length(Y)
Y.L = Y[1:(n-120)] # learning set
Y.T = Y[(n-119):n] # testing set
X.L = X[1:(n-120),] # learning set
X.T = X[(n-119):n,] # testing set
#Putting them as data frames
data_train = data.frame(Unrate=Y.L, X.L) #give Y.L the name Unrate.
data_test = data.frame(X.T)

Least-squares fit: We now use the training set to fit the model

```r
> fitted=lm(Unrate ~ ., data=data_train) #fit model using learning data
   ### the short hand for
   lm(Unrate~lag1 + DIndPro + DPCE + DM2+ DCPI + DSPY + HouSta + FedFund,
      data=data_train)
> summary(fitted)
Call:
  lm(formula = Unrate ~ ., data = data_train)

Residuals:
        Min       1Q   Median       3Q      Max
-0.57550 -0.10182 -0.00682  0.10236  0.57713

Coefficients:     Estimate Std. Error t value Pr(>|t|)
(Intercept)  0.226170  0.048323   4.680  3.59e-06 ***
  lag1       0.983537  0.005129  191.731  < 2e-16 ***
```
Estimated reg. equation

\[\hat{y} = 0.2262 + 0.9835x_1 - 6.3738x_2 + \cdots \]

RSS

\[\text{SSE} = (n - k - 1) \times \hat{\sigma}^2 = (571 - 8 - 1) \times 0.1611^2 = 14.5857 \]

with d.f. = 571 - 8 - 1 = 562.

Multiple R^2

\[= 1 - \text{SSE} / (\text{var}(Y.L) \times (571 - 1)) = 0.9876 \]

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1611 on 562 degrees of freedom
Multiple R-squared: 0.9876, Adjusted R-squared: 0.9874
F-statistic: 5579 on 8 and 562 DF, p-value: < 2.2e-16

| Variable | Coefficient | Std. Error | t-value | Pr(>|t|) |
|-----------|-------------|------------|---------|----------|
| DIndPro | -6.3738324 | 0.8835707 | -7.214 | 1.77e-12 *** |
| DPCE | -3.2168829 | 1.2747416 | -2.524 | 0.0119 * |
| DM2 | 3.1805548 | 2.0666216 | 1.539 | 0.1244 |
| DCPI | 5.4460126 | 3.5150404 | 1.549 | 0.1219 |
| DSPY | -0.1432069 | 0.2025529 | -0.707 | 0.4799 |
| HouSta | -0.0001025 | 0.0000230 | -4.456 | 1.01e-05 *** |
| FedFund | 0.0047555 | 0.0026699 | 1.781 | 0.0754 . |

\[
\text{RSS} = (n - k - 1) \times \hat{\sigma}^2 = (571 - 8 - 1) \times 0.1611^2 = 14.5857
\]

with d.f. = 571 - 8 - 1 = 562.
SE: e.g., $\hat{\beta}_1 = 0.9835$ and $\hat{\text{SE}}(\hat{\beta}_1) = 0.005130$.

Inferences about coefficients: For testing $H_0: \beta_1 = 0$, the test statistic is $t = \frac{0.9835 - 0}{0.005130} = 191.731$. With alternative $H_1: \beta_1 \neq 0$, we have the

$$P\text{-value} = P(|T_{562}| > 191.731) = 0\%.$$

The 95% confidence interval for β_1 is $0.9835 \pm 1.96 \times 0.005130$.

Significant variables: $Y_{t-1}, \Delta \text{IndPro}_{t-1}, \Delta \text{PCE}_{t-1}, \text{HouStat}_{t-1}, \text{FedFund}_{t-1}$.

$$\hat{\sigma} = 0.1611, \quad \text{adjusted Multiple } R^2 = 0.9874.$$

Prediction: Now use hold-out data for testing. For each given x_i^* in the testing set, compute
Predicted value: \(\hat{y}_i^* = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}^* + \cdots + \hat{\beta}_k x_{ik}^* \).

Prediction error: \(\hat{\varepsilon}_i = y_i - \hat{y}_i^* \).

MSE = \(n^* \sum_i (y_i - y_i^*)^2 \) and MADE = \(n^* \sum_i |y_i - y_i^*| \),

where \(n^* \) is the number of test cases.

Y.P = predict(fitted, newdata=data_test) #predicted values at testing set

pdf("Fig112.pdf", width=8, height=2, pointsize=10)
par(mfrow = c(1,2), mar=c(2, 4, 1.5,1)+0.1, cex=0.8)

plot(Month[(n-119):n], Y.T, type="l", col="red", lwd=2) #actual values
lines(Month[(n-119):n], Y.P, lty=2, col="blue") #predicted values

rMSE = sqrt(mean((Y.T-Y.P)^2)) ### root mean-square prediction error
MADE = mean(abs(Y.T-Y.P)) ### mean absolute deviation error
> c(rMSE, MADE)
[1] 0.1685880 0.1335712

Fig. 11.2 depicts the results of prediction (quite well).
Fitted values and Residuals:

fitted.values = fitted$fitted.values #extract fitted values
residuals = fitted$residuals #extract residuals

plot(Month[1:(n-120)], Y.L, type="l", col="red", lwd=2) #actual
lines(Month[1:(n-120)], fitted.values, lty=2, col="blue") #fitted
title("(b) Fitted and actual Unrates")
dev.off()

Residuals and Model Diagonistics: Plot residuals against time, covariates, and fitted values to see if there are any patterns. Standard-
ized residuals \(\hat{\varepsilon}_i^* = \frac{\hat{\varepsilon}_i}{\text{SE}(\hat{\varepsilon}_i)} \) are often used (better). See Fig. 11.3.

Diagnostic plots:

- Standardized residuals vs index or fitted or predictor values
 \((i \text{ or } \hat{y}_i \text{ or } x_i \text{ vs } \hat{\varepsilon}_i^*) \). Ideal: No pattern of the plots.

- Fitted vs original values \((\hat{y}_i \text{ vs } y_i) \)

- Normal Q-Q plot for the standardized residuals.

```r
pdf("Fig113.pdf", width=8, height=4, pointsize=10)
par(mfrow = c(2,2), mar=c(2, 4, 1.5,1)+0.1, cex=0.8)
plot(Month[1:(n-120)], residuals, type="l", col="red", lwd=2) #residuals
title("(a) Time series plot of residuals")
plot(fitted.values, residuals, pch="*", col="red")
title("(b) Fitted versus residuals")

std.res = ls.diag(fitted)$std.res #standardized residuals
```
Figure 11.3: Model diagnostics using residuals and standardized residuals. Top panel using residuals and bottom panel using standardized residuals.

```r
plot(Month[1:(n-120)], std.res, type="l", col="blue", lwd=2) # residuals
title("(c) Standardized residuals")
qqnorm(std.res,col="blue", main="(d) Q-Q plot for std.res")
qqline(std.res, col="red")
de.v.off()
```
Comparison: We use only lag1 alone to fit

```r
fitted1 = lm(Unrate~lag1, data=data_train)
summary(fitted1)
Y.P1 = predict(fitted1, newdata=data_test)
rMSE1 = sqrt(mean((Y.T-Y.P1)^2)) ### root mean-square errors
MADE1 = mean(abs(Y.T-Y.P1)) ### mean absolute deviation error
c(rMSE1, MADE1)
```

```
Estimate Std. Error  t value Pr(>|t|)
(Intercept) 0.038911  0.031700   1.227   0.22
lag1        0.992958  0.005243 189.381 <2e-16 ***
---
Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1794 on 569 degrees of freedom
Multiple R-squared:  0.9844,  Adjusted R-squared:  0.9844
F-statistic: 3.587e+04 on 1 and 569 DF,  p-value: < 2.2e-16
```

In terms of adjusted R^2, the fitting is worse. So are the test errors.
11.3 Cross-validation and Prediction errors

Learning & Testing: Divide data into two sets: S_L and S_T. Use S_L to fit a model, predict values in S_T and compare w/ actual values.

k-fold cross-validation: Divide data randomly into k pieces (about the same size). Use any $k - 1$ subsets of the data as training set and the remaining subset as the test set. Average all testing errors.

Pseudo-code in R.

```R
S = sample(1:n) #random permutation of index set
size = round(n/k) #size of each testing set
for (j in 1:k) #loop through j, need to deal last block more carefully
{
  t.start = (j-1)*size+1 #starting point of $j$ testing
  t.end = j*size #ending point of $j$ testing
  S.T = S[t.start:t.end] #index for testing set
  S.L = S[-(t.start:t.end)] #index for training set
  data.L = data[S.L, ] #test data
  data.T = data[S.T,] #training data
  ...... }
```
CV: When \(k = n \), we use \(n - 1 \) data as learning and 1 as testing.

Bootstrap est of PE: sampling \(n_1 \) as training and the remaining as testing. Repeat \(B \) times and average PEs.

11.4 Analysis of Variance

Is a set of variables \(\{x_i : i \in S\} \) significant given others? Formally,

\[
H_0 : \beta_i = 0, \quad \text{for all } i \in S \quad \leftrightarrow \quad H_1 : \beta_i \neq 0 \text{ for some } i \in S.
\]

E.g. \(S = \{2\} \implies \) has \(D\text{IndPro} \) any significant contribution to \(\text{Unrate} \) given those of all others?

E.g. \(S = \{1,...,8\} \implies \) are all covariates related to \(\text{Unrate} \)?

Test statistic: Compare SSE using all variables with that without using variables in \(S \), namely using \(\{X_i : i \in S^c\} \). Clearly \(\text{SSE}(S^c) - \text{SSE}(all) \) is the **additional contribution** (SSE reduction) of variables \(\{X_i : i \in S\} \), after accounting for the contributions by \(\{x_i : i \in S^c\} \).

\[
F = \frac{(\text{SSE}(S^c) - \text{SSE}(all))/p}{\text{SSE}(all)/(n - k - 1)} \quad H_0 \sim F_{p,n-k-1},
\]
where p is the number of covariates involved in S. Thus,

$$P\text{-value} = P\{F_{p,n-k-1} \geq F_{obs}\}.$$

The results are often summarized in

```r
> fitted2 = lm(Unrate~lag1 + DIndPro + DPCE + HouSta + FedFund, data=data_train) ##fit with variables in $S^c$
> summary(fitted2)

| Estimate   | Std. Error | t value | Pr(>|t|) |
|------------|------------|---------|----------|
| (Intercept) | 2.185e-01  | 4.805e-02 | 4.546    | 6.68e-06 *** |
| lag1       | 9.846e-01  | 4.948e-03 | 198.990  | < 2e-16 ***   |
| DIndPro    | -6.406e+00 | 8.825e-01 | -7.259   | 1.29e-12 ***  |
| DPCE       | -3.524e+00 | 1.235e+00 | -2.855   | 0.00446 **    |
| HouSta     | -9.098e-05 | 2.206e-05 | -4.125   | 4.26e-05 ***  |
| FedFund    | 6.288e-03  | 2.188e-03 | 2.874    | 0.00421 **    |

---

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1612 on 565 degrees of freedom  
Multiple R-squared:  0.9875,  Adjusted R-squared:  0.9874  
F-statistic:  8917 on 5 and 565 DF, p-value: < 2.2e-16

> anova(fitted, fitted2)

Analysis of Variance Table
Model 1: \( \text{Unrate} \sim \text{lag1} + \text{DIndPro} + \text{DPCE} + \text{DM2} + \text{DCPI} + \text{DSPY} + \text{HouSta} + \text{FedFund} \)

Model 2: \( \text{Unrate} \sim \text{lag1} + \text{DIndPro} + \text{DPCE} + \text{HouSta} + \text{FedFund} \)

Res.Df   RSS  Df  Sum of Sq    F  Pr(>F)
1   562 14.586
2   565 14.678 -3  -0.091976 1.1813 0.3161

11.5 Nonlinear regression  §13.3

Polynomial regression of order \( k \):

\[
Y = \beta_0 + \beta_1 X + \cdots + \beta_k X^k + \varepsilon
\]

is a multiple regression problem by setting \( X_1 = X, \cdots, X_k = X^k \).

motor = read.table("motordata.txt", header=T, skip=3) #read data
x = motor[,1]; y = motor[,2]
pdf("Fig114.pdf", width=5, height=2, pointsize=10)
par(mfrow = c(1,1), mar=c(2, 4, 1.5,1)+0.1, cex=0.8)
plot(motor,pch="*")    #scatter plot
####################################################################
\begin{verbatim}
X = cbind(x, x^2, x^3) #cubic polynomials
fitted4 = lm(y~X)$fitted.values #fitted
lines(x, fitted4, lwd=2, col="red")
\end{verbatim}

Figure 11.4: Scatter plot of time (in milliseconds) after a simulated impact on motorcycles against the head acceleration (in a) of a test object. Red = cubic polynomial fit, blue = cubic spline fit.
**Cubic spline basis**: For given knots \( \{ t_1, \cdots, t_m \} \),

\[
B_1(x) = x, B_2(x) = x^2, B_3(x) = x^3, \quad B_{3+i}(x) = \begin{cases} 
(x - t_i)^3 & \text{if } x \geq t_i \\
0 & \text{otherwise}
\end{cases}
\]

This is a much more very flexible basis.

**Spline regression**:

\[
Y = \beta_0 + \beta_1 B_1(X) + \cdots + \beta_{m+3} B_{m+3}(X) + \varepsilon
\]

```
cubic spline basis
knots = seq(5,40,by=5) #creating knots
k = length(knots) #length of knots
X = matrix(rep(x, k),ncol=k) #repeating x, k times
X = t(t(X)- knots) #col i = x - knot[i]
X = X^3
X[X < 0] = 0 #cubic spline basis w knots
X = cbind(x, x^2, x^3, X) #cubic spline basis
```
fitted5 = lm(y~X)$fitted.values  #cubic spline fitted
lines(x, fitted5, col="blue")
title("Polynomial versus cubic spline fit")
dev.off()

11.6 Polynomials with several predictors§13.4

**Quadratic regression:** For bivariate

\[ Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2 + \beta_{12} X_1 X_2 + \text{error} \]

The term \( \beta_{12} X_1 X_2 \) is the **interactions** between \( X_1 \) and \( X_2 \).

**Interaction:** commonly used form

\[ Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \text{error}. \]
Multiple regression: by defining

\[ Z_1 = X_1, \ Z_2 = X_2, \ Z_3 = X_1^2, \ Z_4 = X_2^2, \ Z_5 = X_1 X_2 \]

we can see the multiple regression technique.

11.7 Model building using dummies §13.4

Dummy variables, also called indicator variables, are used to include categorical predictors in a regression analysis.

Example: Here are a few simple cases (Dichotomous):

<table>
<thead>
<tr>
<th>Gender</th>
<th>Smoking</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>Yes</td>
<td>present</td>
</tr>
<tr>
<td>female</td>
<td>No</td>
<td>not present</td>
</tr>
</tbody>
</table>
For a dichotomous variable, we define $X = \begin{cases} 1, & \text{if treatment} \\ 0, & \text{if control} \end{cases}$

**Example:** Gender difference in income:

$Y = \text{salary}, \ X_1 = \text{age}, \ X_2 = \text{year of exp.}, \ X_3 = \begin{cases} 1, & \text{if male} \\ 0, & \text{if female} \end{cases}$

The dummy variables can be used quite differently.

**Possible models:**

a) **No-interaction model:**

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \text{error}$$

$$= \begin{cases} 
\beta_0 + \beta_1 X_1 + \beta_2 X_2 + e, & \text{for female} \\
(\beta_0 + \beta_3) + \beta_1 X_1 + \beta_2 X_2 + e, & \text{for male} 
\end{cases}$$

$\beta_3$ is the gender difference after adjusting for $X_1, X_2$. 
b) **Complete interaction model.**

\[ Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_3 + \beta_5 X_2 X_3 + \text{error} \]

\[
= \begin{cases} 
\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \text{error}, & \text{for female} \\
(\beta_0 + \beta_3) + (\beta_1 + \beta_4) X_1 + (\beta_2 + \beta_5) X_5 + \text{error}, & \text{male} \end{cases}
\]

\[ \beta_3, \beta_4, \beta_5 \text{ reflect the gender diff. wrt salary, age and exp.} \]

c) **Partial interaction model,**

\[ Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_{23} X_2 X_3 + \text{error} \]

\[
= \begin{cases} 
\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \text{error}, & \text{for female} \\
(\beta_0 + \beta_3) + \beta_1 X_1 + (\beta_2 + \beta_{23}) X_2 + \text{error}, & \text{for male} \end{cases}
\]

Difference in intercept and experience, but fair in age.
More than two categories (polytomous): When a categorical predictor contains more than two categories, e.g. Race = \{ Black, white, Asian \}. One way is to define

\[
X_3 = \begin{cases} 
0, & \text{if Black,} \\
1, & \text{if White,} \\
2, & \text{if Asian.}
\end{cases}
\]

but often not useful. For example,

\[
\text{Salary} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + e
\]

\[
= \begin{cases} 
\beta_0 + \beta_1 X_1 + \beta_2 X_2 + 0 & \text{for black} \\
\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 & \text{for white} \\
\beta_0 + \beta_1 X_1 + \beta_2 X_2 + 2\beta_3 & \text{for asian}
\end{cases}
\]

Remedy: More than one dummy is needed. Define

\[
X_3 = \begin{cases} 
1 & \text{black} \\
0 & \text{not black}
\end{cases}, \quad X_4 = \begin{cases} 
1 & \text{white} \\
0 & \text{not white}
\end{cases}, \quad X_5 = \begin{cases} 
1 & \text{asian} \\
0 & \text{not asian}
\end{cases}
\]
Note that $X_3 + X_4 + X_5 = 1$ = intercept term, so only two of them can be used. Now, assume the linear model

$$\text{eg. Salary} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e$$

$$= \begin{cases} 
\beta_0 + \beta_1 X_1 + \beta_2 X_2 & \text{for asian} \\
(\beta_0 + \beta_3) + \beta_1 X_1 + \beta_2 X_2 & \text{for black} \\
(\beta_0 + \beta_4) + \beta_1 X_1 + \beta_2 X_2 & \text{for white} 
\end{cases}$$

**Nonlinear fits using dummies.** We can divide DCPI into low, middle, and high inflations and use indicators to fit the unemployment.