245: Fundamentals of Statistics
Jianqing Fan — Frederick L. Moore’18 Professor of Finance
Ricardo Masini
Problem Set #2 Fall 2020
Due Wednesday, September 16, 2020.

1. Suppose that 55% of all adults regularly consume coffee, 45% regularly consume carbonated soda, and 70% regularly consume at least one of these two products.
 - What is the probability that a randomly selected adult regularly consumes both coffee and soda?
 - If a randomly selected adult regularly consumes soda, what is the probability that he/she also regularly consumes coffee?
 - What is the probability that a randomly selected adult does not regularly consume at least one of these two products?

2. A friend is giving a dinner party. His current wine supply includes 8 bottles of zinfandel, 10 of merlot and 12 of cabernet. Pick 6 bottles at random.
 (a) What is the probability of getting two bottles of each variety?
 (b) What is the probability of getting all of the same variety?
 (c) What is the probability of getting at least two cabernet?
 (d) What is the probability of getting the first merlot at the fourth pick?

3. Suppose that 30% of computer owners use a Macintosh, 50% use Windows, and 20% use Linux. Suppose that 65% of the Mac users have succumbed to a computer virus, 82% of the Windows users get the virus, and 30% of the Linux users get the virus. We select a person at random.
 (a) What is the probability that her computer has infected by the virus?
 (b) Given the condition that her system has already infected by the virus, what is the probability that she is a Windows user?

4. Suppose that a system consists of 4 independent components C_1, \cdots, C_4 connected as below, with $P(C_1) = 0.9, P(C_2) = 0.8, P(C_3) = 0.95, P(C_4) = 0.7$, in which $P(C_i)$ denotes the probability that the component C_i works properly.
(a) What is the chance that the first parallelly connected component works properly?

(b) What is the probability that the system works properly?

5. Consider adjusted closing prices of SP500 index from Jan. 1, 2000 to September 8, 2016. Pick a day at random.

(a) What is the probability that the SP500 is down? (Hint: Let \(n_{\text{days}} = \text{length}(r\text{SP500}) \) be the number of days and the probability is then \(\text{sum}(r\text{SP500} < 0)/n_{\text{days}} \)).

(b) What is the probability that the SP500 is down given its previous day is down? Are the signs of the returns of two consecutive days approximately independent? (Hint: \(\text{sum}(r\text{SP500}[1:(n_{\text{days}}-1)] < 0 \& r\text{SP500}[2:(n_{\text{days}})] < 0) \) is the number of two consecutive downs and \(\text{sum}(r\text{SP500}[1:(n_{\text{days}}-1)] < 0 \) is the number of previous days that the SP500 index is down.)

(c) What is the probability that the absolute value of returns of the SP500 on the day is at least 1.5%?

(d) If the absolute value of the return of SP500 is at least 1% in the previous close, what is the probability that the absolute value of the return of today is at least 1.5%?

Remark: The first two problems are designed to show unpredictability of stock returns and the next two problems are intended to illustrate the dependence (predictability) of stock volatility.

6. The capture and recapture problem: Estimate population size

To estimate the number of deers in a region, 10 deers were caught, tagged and returned to the region. Some time later another 20 were caught and only 4 were tagged ones. Assume no deers escape from the region. Find a reasonable estimate for the number of deers \(n \) in the region. ¹

(a) **Probability question:** If the deers are caught at random, what is the probability of catching 4 tagged deers in the above problem?

(b) **Statistics question:** What is the \(n \) that makes 4 tagged deer being caught most likely? Write an R-function to find the value \(\hat{n} \) in the interval \([25, 100]\) that maximizes the probability.

¹**Hint:** See page 22 on “Materials for Quick Start of R installation and learning” posted on the class web