Human Factors Evaluation of Level 2 and Level 3 Automated Driving Concepts

Myra Blanco
Jon Atwood
Holland M. Vasquez
Tammy E. Trimble
Vikki L. Fitchett
Josh Radlbeck
Gregory M. Fitch
Sheldon M. Russell
Charles A. Green
Brian Cullinane
Justin F. Morgan

Project Sponsors:
National Highway Traffic Safety Administration and Intelligent Transportation Systems Joint Program Office
Paul Rau, COTR for DTNH22-11-D-00236, #11

Project Vehicle Partners:
General Motors and Google
Are we there yet? Are we there yet? Are there yet?
Overview of Three Experiments

Experiment 1 – L2
- Alert Type (within subject):
 - Cautionary
 - Staged
 - Imminent
- Alert Modality (within):
 - Unimodal
 - Multimodal
- 25 participants
- One 90-min session

Experiment 2 – L2
- Driving Session (within)
- Event Type (within):
 - Alert
 - No Alert
 - No Lane Drift
- Prompt Condition (between subjects):
 - 2-s
 - 7-s
 - No prompt
- 56 participants
- Three 60-min sessions

Experiment 3 – L3
- Driving Session (within)
- Alert Type (within):
 - Staged
 - Imminent – External Threat
 - Imminent – No External Threat
- 25 participants
- Three 30-min sessions

7/23/2015
Advancing Transportation Through Innovation
Vehicles and Partners

Experiment 1
(L2 ADS)

2009 Chevy Malibu

Experiment 2
(L2 ADS)

2010 Cadillac SRX

Experiment 3
(L3 ADS)

2012 Lexus RX450h

GM

Google
Experiment 2

• 56 participants; mean age = 41 yrs.
• Investigated L2 attention prompt effectiveness
• Drivers experienced 2-s, 7-s, or no prompts
 – Prompts progression
 • Stage 1: Visual
 • Stage 2: Visual + haptic
 • Stage 3: Visual + haptic + auditory
Experiment 2

- Three 1-hour driving sessions
- Asus Nexus 7 tablet computer was provided to participants
- In-vehicle experimenter gave a series of navigation, email, and web-browsing tasks
- 30 tasks in each category, potential of 90 tasks in all
Driving-related Glance Time (Attention to Roadway)

- No Prompts
- 7-second
- 2-second

Percentage

Before After
Time to React to Unexpected Lane Drift

- No Alert: 4 seconds
- Visual + Haptic Alert: 1 second
Time to Regain Control

[Graph showing comparison of 2-second, 7-second, and No Prompts conditions with time in seconds on the y-axis and conditions on the x-axis.]
Experiment 3

- 25 participants; mean age = 38.8 yrs.
- Investigated L3 Take-Over Request Effectiveness
- Drivers received one alert per 30-minute session
 - Staged
 - Imminent – No External Threat
 - Imminent – External Threat (i.e., box on road)
Experiment 3

- Three 30-min driving sessions
- Participants were allowed to perform tasks and access Internet on Asus Nexus 7 tablet and use their personal smartphone as they wished
- Tablet was pre-loaded with movies, games
- Tasks to be done only when L3 automation was activated
Time to Regain Control (Staged Alert)

Phase 1 – Informational Message
Phase 2 – Cautionary Alert
Phase 3 – Cautionary Alert
Phase 4 – Imminent Alert
Phase 4 Ends
Key Takeaways

• Take Over Request
 – Most effective hand-off strategies were those that incorporated nonvisual components
 • Effective countermeasures to primary task reversals when drivers performed non-driving tasks

• Regain Control
 – L2 mean of 1.3 s (S.E. = 0.1 s)
 • Imminent visual and haptic alert
 – L3 mean of 2.3 s (S.E. = 0.2 s)
 • Imminent visual plus auditory alert

• Trust
 – High trust in automation for both levels of automation but calibrated
 • Trust was reduced after events where something occurred unannounced
Vehicle Automation Theories

• Primary Task Reversal

• Alert Annoyance Habituation
Primary Task Reversal

• Full-priority shift from driving-related task to non-driving tasks
 – Non-driving tasks becomes primary task demoting controlling the vehicle to secondary task
 – Readiness to respond to driving-related prompts and alerts can be delayed because operators feel obliged to complete non-driving task first
Alert Annoyance Habituation

• Operators can weigh non-driving task as more urgent if the TOR alert’s urgency is low
• Operators can weigh the non-driving task as less urgent if the TOR alert urgency is high
• Need HMIs that balance conspicuity, urgency, and annoyance
Acknowledgments

Many thanks to NHTSA and ITS JPO, the project’s sponsors; to Dr. Paul Rau, Contracting Officer’s Technical Representative; and to our partners and stakeholder committee members!

Questions

Myra Blanco
mblanco@vtti.vt.edu