Automated Driving development in France: 2015 update

Prof. Arnaud de La Fortelle
MINES ParisTech
Centre for Robotics
Past and future projects

What has changed

• A few key labs were involved
 – Inria, IFSTTAR, MINES ParisTech, UTC, LASMEA…
 – European projects: Cybercars (1 & 2), CityMobil (1 &2)…
 – French projects: MobiVIP, CityVIP, ABV…
 – Techno-driven or Transportation driven

• Car manufacturers and OEM mainly outside

• Now this has changed
 – Industry heavily implied
 – Government and research agencies pushing for coordination

• Labs have adjusted
Current picture in France

• Funding shift
 – More industrial money and less public funding

• Research themes closer to the industry
 – Proof of concepts (e.g. cybercars) is not needed anymore
 – Performance is key and metrics are discussed
 – Validation matters: large scale experiments or simulations
 – Architecture, component standardization…

• Leading to a different research approach
 – Trend to re-use platforms or soft from previous research
 • Start-ups are popping up (simulation, communication…)
 – More cooperation for advanced research
 – Academic networks better organized with the industry
Research

• Restructuring:
 – Those with real vehicles and the others
 – Funding changes
 – Alliances

• VeDeCom Institute
 – PPP: 60 M€ public funding + 60 M€ private funding
 – Peugeot, Renault, Valeo, Safran, etc. partners
 – Inria, IFSTTAR, MINES ParisTech, UTC, etc. partners
 – ITS WC Demonstrations
Industry

• Private plans expending
 – PSA experimenting automated cars on public roads
 – Renault working with Nissan
 – Valeo demonstrations (CES2015)
 – Other players: AKKA, Ligier…
 – Start-ups companies (YoGoKo…)

• Collaborations
 – VeDeCoM
 – Partnerships (e.g. PSA+Valeo+Safran)
 – Support from government
Governement

- Research support
 - Basic research (ANR)
 - Applied research (BPI)
 - PPP incentives (e.g. VeDeCoM)

- NFI (Nouvelle France Industrielle)
 - Testing and deployment support (funding)
 - Legal changes
 - High-level support (Carlos Ghosn leads it)

- Delayed Competitions
 - Announced last year: ("défi") Viviane for Automated Driving
Chairs

2 examples at MINES ParisTech

• Chair Drive for You
 – Open research, international, dissemination
 – PSA + Valeo + Safran (3.7 M€)
 – MINES ParisTech + UC Berkeley/PATH + EPFL + SJTU
 – Europe + America + Asia testing
 – Focus on urban autonomous driving (getting social)
 – Research themes:
 • Maps, pedestrian, robust control, cooperative planning

• Chair for Urban Logistics
Drive for You

Criteria that have to be balanced vs. Related properties of the system

<table>
<thead>
<tr>
<th>Criteria that have to be balanced</th>
<th>Related properties of the system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Efficiency (traffic)</td>
</tr>
<tr>
<td>Planning</td>
<td>Reactivity</td>
</tr>
<tr>
<td>Centralized</td>
<td>Distributed</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>Heterogeneous</td>
</tr>
<tr>
<td>Cooperative</td>
<td>Self-optimized (egoistic)</td>
</tr>
</tbody>
</table>

- **Safety**
 - Efficiency (traffic)

- **Planning**
 - Reactivity
 - Resilience

- **Centralized**
 - Distributed
 - Scaling, autonomy, short reaction time

- **Homogeneous**
 - Heterogeneous
 - Scaling, standardization

- **Cooperative**
 - Self-optimized (egoistic)
 - Social behavior, fairness, autonomy

Paper ITS-2794: *Autonomous driving at intersections: combining theoretical and practical approaches*
Research (continued)

Trends in the funding and organization

• European and French funding still continue:
 – For standardization, validation (FoT)…
 – For hard research problems

• Direct industry contracts (as usual)
 – no information

• A diversifying industry also for public transport
 – E.g. Navia shuttle, BestMile services…
 – It is going global
AutoNet 2030

Facts and figures

• **Full title:** Networked Automated Driving by 2030

• **Partners:** SCANIA, CRF, Hitachi, BaseLabs, EPFL, ICCS, TU-Dresden, Armines/MINES ParisTech/Inria, *BroadBit*

• **Starting Date:** November 1, 2013
• **Ending Date:** October 31, 2016

• **Budget Total/Funding:** 4.6 MEUR / 3.3 MEUR
• **Type of project:** European project, STREP
AutoNet 2030 Objectives

• Motivation: Convergence between sensor-based vehicle automation and cooperative V2X communications

• Objectives:
 – Maneuvering control algorithms for cooperative automation
 – Specifications of V2V messages for automated driving
 To be contributed into ETSI ITS standardization
 – Development of an architecture for complex cooperative control
 Experiments and demonstration on test sites.
Expected impact

• Measurable improvements on
 – safety: maneuvering control algorithms
 – energy efficiency: cooperative speed planning (less traffic flow fluctuations)

• by demonstrations in several test sites (Björkvikring, Versailles, Turin) and simulations
AutoNet 2030 Assumptions

• V2X Communication is widespread
 – so that there will be cooperative vehicles (and infrastructure)
 – Other vehicles are called *legacy vehicles*

• There will be good sensing and data sharing
 – Accurate maps are assumed (LDM)

• Vehichles *can* be automated:
 – There are cooperative automated vehicles
 – And cooperative manually driven vehicles
 – You can drive your (potentially automated) vehicle
Hybrid coordination approach

A hierarchical system

- Partially distributed
 - Short reaction times, scalability
- Partially centralized
 - Coordination, global functions (e.g. navigation)

- Several level of coordination in automation
 - Fully in platoons: very tight control, strict requirements
 - More independence in Control Areas
 - Independence if alone

- Information distribution reflects these levels
Structures

Structures for Coordination Levels and Information Exchanges

• Local and global cooperative areas:
 – Platoon, Convoy: tight coordination and data synchronization
 – Control area (dynamic/static): control recommendation
 – Different in cities (junctions, static) and highways (dynamic)
Challenges

• What is the hierarchy of tasks?
 – Specific role of each structure
 • In distributed data fusion
 • In control and maneuver coordination
 – Is the system distributed within a structure?
 – Is it distributed among structures?

• A research effort is ongoing to understand
 – How information should be distributed
 – How to combine distributed and centralized control

• Definition of what is cooperative maneuvering
 – And what are the messages to be exchanged (standardized)
Conclusion

• Driving automation (Cybercars, Self-driving cars…) is starting
• When massive, this will lead to coordination problems
• AutoNet 2030 is a European effort to better understand
 – How to coordinate maneuvers
 – In a hybrid, scalable approach
• AutoNet 2030 will contribute
 – To increase our understanding of cooperative maneuvering
 – Help define the necessary structures
 – Contribute to standardization by proposing terms and coordination mechanisms
Thank you

Prof. Arnaud de La Fortelle
arnaud.de_la_fortelle@mines-paristech.fr
www.mines-paristech.eu