Daniel Kuhn, Ecole Polytechnique Federale de Lausanne

Optimization Seminar
Fri Nov 12 2021 11:00 AM to 12:00 PM

Abstract

Robust and distributionally robust optimization are modeling paradigms for decision-making under uncertainty where the uncertain parameters are only known to reside in an uncertainty set or are governed by any probability distribution from within an ambiguity set, respectively, and a decision is sought that minimizes a cost function under the most adverse outcome of the uncertainty. In this paper, we develop a rigorous and general theory of robust and distributionally robust nonlinear optimization using the language of convex analysis. Our framework is based on a generalized `primal-worst-equals-dual-best' principle that establishes strong duality between a semi-infinite primal worst and a non-convex dual best formulation, both of which admit finite convex reformulations. This principle offers an alternative formulation for robust optimization problems that may be computationally advantageous, and it obviates the need to mobilize the machinery of abstract semi-infinite duality theory to prove strong duality in distributionally robust optimization. We illustrate the modeling power of our approach through convex reformulations for distributionally robust optimization problems whose ambiguity sets are defined through general optimal transport distances, which generalize earlier results for Wasserstein ambiguity sets.


Bio: Daniel Kuhn holds the Chair of Risk Analytics and Optimization at EPFL. Before joining EPFL, he was a faculty member at Imperial College London (2007-2013) and a postdoctoral researcher at Stanford University (2005-2006). He received a PhD in Economics from the University of St. Gallen in 2004 and an MSc in Theoretical Physics from ETH Zurich in 1999. His research interests revolve around robust optimization and stochastic programming.