Time for a Time-Change: A new Approach to Multivariate Intensity Models of Credit Risk

Philipp J. Schönbucher D-MATH, ETH Zürich

Princeton, May 2008
Outline

1. Introduction
 - Pricing Single-Tranche CDOs

2. Current Multivariate Intensity Models

3. Time-Changed Intensity Models

4. Possible Specifications of Time Changes

5. Implementation
Current Portfolio Credit Risk Models

- Gauss copula (current standard): Widespread dissatisfaction
 - (i) Ad-hoc “fit” via base correlation / recovery curves
 - (ii) Unrealistic term-structure properties.
 - (iii) Instability of parameters
 - (iv) No proper dynamics, no consistent hedging.
 - (v) Various quick-fixes exist for (i) and (ii).

- Multivariate firm’s value models:
 - (i) Too little flexibility: Bad fit to single-obligors already
 - (ii) Numerically prohibitively intensive for portfolios
 - (iii) Plausible story, fundamental link.

- Top-down models:
 - (i) Excellent fit and dynamics for standard index portfolios
 - (ii) Aggregated, hard to get hedges against individual obligors

- Multivariate intensity models: Probably best way forward
 (more later)
Requirements from a New Model

Application:
- **Bespoke Tranches:** Extrapolation of structure from indices to other portfolios.
- **Exotic credit derivatives:** Forward-starting tranches, various options on tranches and index, Leveraged super-senior tranches.

Hedging:
- Realistic CDS (individual) and CDO (portfolio) dynamics.

Calibration:
- to single-obligor survival probability curves
- to CDO tranches on standard indices

Numerical efficiency:
- fast calibration
- which (almost) requires conditional independence
Related Literature

- Multivariate intensity models: Duffie and Garleanu [2001], Gaspar and Schmidt [2005], Mortensen [2005]
- Time-changes in credit risk:
 Joshi and Stacey [2005]: special case and precursor of this paper
 Giesecke and Tomecek [2005]: time-changes in top-down approaches
- Time-changes in option pricing: Clark [1973], Madan et al. [1998], Geman et al. [2001], Cont and Tankov [2004], Carr et al. [2003]
1 Introduction
 • Pricing Single-Tranche CDOs

2 Current Multivariate Intensity Models

3 Time-Changed Intensity Models

4 Possible Specifications of Time Changes

5 Implementation
Obligors and Loss Process

- $i = 1, \ldots, I$ obligors
- with default times τ_i
- and default indicator processes $D_i(t) = 1_{\{\tau_i \leq t\}}$.

The key quantity of the model is the **default loss process**

$$L(t) := \sum_{i=1}^{I} D_i(t).$$

(losses given default are normalized to one)
A Typical Loss Process

Cumulative loss process L_C of a STCDO with lower and upper attachment points K_1 and K_2

$$L_C(t) = (L(t) - K_1)^+ - (L(t) - K_2)^+. $$
Market Quotes: STCDOs on iTraxx Europe

<table>
<thead>
<tr>
<th>Maturity</th>
<th>3Y</th>
<th>5Y</th>
<th>7Y</th>
<th>10Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>High</td>
<td>Bid</td>
<td>Ask</td>
<td>Bid</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>6.0</td>
<td>7.5</td>
<td>29.50</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>18</td>
<td>28</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>6</td>
<td>13</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>7.50</td>
<td>8.75</td>
<td>12</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
<td>2.25</td>
<td>4.00</td>
<td>5.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>22</th>
<th>38</th>
<th>47</th>
<th>58</th>
</tr>
</thead>
</table>

Quotes for loss protection on tranches of European iTraxx Series 4, on Sept. 26th, 2005. Lower and upper attachment points are in % of notional, base correlation (BC) is given in %. Prices for the 0-3 tranche are % of notional upfront plus 500bp running, all other prices are bp p.a.. Source (including BCs): JPMorgan.
Remarks

- Liquid markets exist for STCDOs on standard indices.
- Standard pricing model: 1-Factor Gauss copula.
- Widespread dissatisfaction with performance and properties of Gauss copula models.
 - Inability to “fit”, problems when interpolating base correlations.
 - Instability of parameters (GM/Ford May 2005)
 - Unrealistic term-structure properties.
 - No proper dynamics, no consistent hedging.
- Exotic credit derivatives:
 Forward-starting tranches, options on tranches and index,
 Leveraged super-senior tranches.
The Cumulative Loss

- The initial cumulative loss is zero: $L(0) = 0$.
- At the j-th credit event $\tau(j)$ ($1 \leq j \leq I$), the cumulative loss is increased by the loss at this default:

$$dL(t) = \sum_{i=1}^{I} E_i (1 - R_i) dD_i(t).$$

E_i exposure, and R_i recovery rate of obligor i.
- The cumulative loss of the tranche $L^C(t)$ is the amount by which the cumulative loss of the portfolio has exceeded the lower bound K_1, capped at the upper bound K_2:

$$L^C(t) = (L(t) - K_1)^+ - (L(t) - K_2)^+.$$
Default and Fee Payment

The **default payment** of the protection seller to the protection buyer at a default event is the increase in the cumulative loss of the tranche:

\[L^C(\tau_i) - L^C(\tau_i^-) \]

The protection buyer pays a periodic **protection fee** of \(\bar{s} \) of the remaining notional of the tranche.

\[\bar{s} \cdot \left[K_2 - K_1 - L^C(t) \right] \, dt. \]
Pricing Tranche Protection I

L^C cumulative loss of the tranche:
Loss payment at time $t = \text{increment in } L^C \text{ at time } t$.
The NPV of the loss payments of the tranche can be transformed using integration-by-parts:

$$\int_0^T \beta(t) dL^C(t) = \beta(T)L^C(T) - \int_0^T L^C(t) d\beta(t)$$

$$= \beta(T)L^C(T) + \int_0^T L^C(t)\beta(t)r(t)\,dt.$$

- $\beta(t) = \exp\{-\int_0^t r(s)\,ds\}$ is the default-free discount factor.
- $d\beta(t) = -r(t)\beta(t)\,dt$.
- This holds for each sample path (and not just on average).
Pricing Tranche Protection II

Assume independence of defaults and default-free interest rates:

\[
E^Q \left[\int_0^T \beta(t) dL^C(t) \right] = B(0, T) \ E^Q \left[L^C(T) \right] \\
+ \int_0^T \ E^Q \left[L^C(t) \right] f(0, t) B(0, t) dt, \\
\]

\[
f(0, t) = -\frac{\partial}{\partial T} \ln B(0, T) \text{ are the default free forward rates.}
\]

Note:

We only need the distribution or the density \(f^L(x, t) \) of the cumulative loss of the **whole** portfolio. The expected tranche loss for each tranche is then:

\[
E^Q \left[L(t) \right] = \int_{K_1}^{K_2} (x - K_1) f^L(x, t) dx + (K_2 - K_1) F^L(K_2, t).
\]
The Fee Payment

The NPV of the reduction of the fee payment in one given scenario is

$$\int_0^T \bar{s} \cdot L^C(t) \beta(t) \, dt.$$

Its value is

$$\bar{s} \int_0^T \mathbf{E}^Q \left[L^C(t) \beta(t) \right] \, dt = \bar{s} \int_0^T \mathbf{E}^Q \left[L^C(t) \right] B(0,t) \, dt.$$

Again, only dependence on the value of $L^C(t)$ (or $L(t)$) at all times $t \leq T$.
Overview

1 Introduction

2 Current Multivariate Intensity Models

3 Time-Changed Intensity Models

4 Possible Specifications of Time Changes

5 Implementation
Typical Setup of Multivariate Intensity Models

- Each obligor $i \leq I$ has a default arrival process $N_i(t)$ with intensity $\lambda_i(t)$.

- Conditional on the joint realisation of $\{\lambda_1(t), \lambda_2(t), \ldots, \lambda_I(t)\}_{t \geq 0}$, the $N_i(t)$ are indep. inhomog. Poisson processes with intensities $\lambda_i(t)$. (Joint Cox process)

- Individual default intensities $\lambda_i(t)$ are modeled as a (weighted) sum of:
 - a common stochastic factor $\lambda^G(t)$
 - and an independent idiosyncratic component $\lambda^{id}_i(t)$

$$\lambda_i(t) = w_i \lambda^G(t) + \lambda^{id}_i(t).$$
Additive Specification: General Remarks

\[\lambda_i(t) = w_i \lambda^G_i(t) + \lambda^{id}_i(t). \]

- Interpretation as competing risks model.
- Intrinsic bounds on risks:
 - \(w_i \lambda^G_i(t) \) is the lowest possible level that \(\lambda_i \) can reach.
 - In large (homogeneous) portfolios:
 Portfolio default rate is always larger than \(\lambda^{id}_i(t) \).
- Initial Fit to Single-Name CDS
 High-quality obligors will need lower \(w_i \), will have (relatively) little systematic risk if downgraded
- Dynamics depend on quality of obligors.
- Specification: Strong co-movements of \(\lambda_i \) are necessary to reach realistic default dependence (i.e. high volatility of \(\lambda^G_i \)).
Additive Specification: Conditional Independence

\[X(T) := \int_0^T \lambda^G(t) \, dt \quad \text{the common factor} \]
\[P_x(T, b) := \mathbb{E} \left[e^{-bX(T)} \right] \quad \text{the systematic part of the PS} \]
\[P_i(T) = \mathbb{E} \left[e^{-\int_0^T \lambda^{id}_i(t) \, dt} \right] \quad \text{the idiosyncratic part of the PS} \]

Then, \textbf{conditional} on \(X(T) \), survivals up to \(T \) are independent with individual conditional survival probabilities

\[P_{Xi}(T, X(T)) = e^{-w_iX(T)} P_i(T) \]

The \textbf{unconditional} survival probability of obligor \(i \) until time \(T \) is:

\[\mathbb{P} \left[\tau_i > T \right] = P_x(T, w_i) P_i(T) \]
Overview

1 Introduction

2 Current Multivariate Intensity Models

3 Time-Changed Intensity Models

4 Possible Specifications of Time Changes

5 Implementation
Modelling Strategy

1 Specify a benchmark, **pre** time-change model \((F_t)_{t \geq 0}\): Tractable, easily understood, defaults are independent.

2 Define a time-change \(T\).
 The real-world time \(t\) is mapped to the (random) time \(T_t\) in the pre time-change model.

3 Result: The real-world, **post** time-change model \((G_t)_{t \geq 0}\): realistic, defaults are dependent.
Pre Time-Change Model

For each obligor $i = 1, \ldots, I$, we have

(i) an $(\mathcal{F}_t)_{t \geq 0}$-adapted, pre time-change intensity $\tilde{\lambda}_i(s) \geq 0$,

(ii) a unit exponentially distributed default trigger variable E_i.

$\tilde{\lambda}_i(s)$ and E_i are independent from each other and across obligors. The pre time-change default time of obligor i is:

$$\tilde{\tau}_i = \inf\{t \geq 0 \mid \int_0^t \tilde{\lambda}_i(s) \, ds \geq E_i\},$$
Remarks

- $\tilde{\lambda}_i(t)$ will not be the intensity after the time change. The “true” intensity is given later.
- No big loss of generality to assume $\tilde{\lambda}_i(t)$ non-stochastic. Idiosyncratic dynamics of the intensities do not affect the prices of CDS or STCDOs.
- The values of the pre time-change intensities will have to be found from marginal survival probabilities $P_i(0, T)$ by calibration.
- **Conditional independence:** Conditional on the full path of the time change T_t, defaults are independent from each other.
- But also: Conditional on $(\mathcal{F}_t)_{t\geq 0}$, $N_i(t)$ are independent.
Stochastic Time Changes I

- A *time change* is a right-continuous, increasing, $[0, \infty]$-valued stochastic process $(T_s)_{s \in \mathbb{R}_+}$ such that T_s is a $(\mathcal{F}_t)_{t \geq 0}$-stopping time for any $s \in \mathbb{R}_+$.

- The distribution and density functions of T:

 \[F(t, s) := \mathbb{P}[T_t \leq s] \]

 \[f(t, s) := \frac{\partial}{\partial s} F(t, s). \]

 One may normalise the mean of T_t to $\mathbb{E}[T_t] = t$, this should add stability to the calibration procedure.
Stochastic Time Changes II

By \((\mathcal{G}_t)_{t \geq 0}\) we denote the *time-changed filtration*

\[
\mathcal{G}_s := \mathcal{F}_{T_s},
\]

where \(\mathcal{F}_{T_s}\) is the sigma algebra of all events observable up to the stopping time \(T_s\).

\((\mathcal{G}_t)_{t \geq 0}\) is increasing (it is still a filtration), right-continuous (if \(T\) is right-continuous), and complete, thus \((\mathcal{G}_t)_{t \geq 0}\) is indeed a proper filtration which satisfies the usual conditions.
Time-Changed Processes

Let X be a process adapted to $(\mathcal{F}_t)_{t \geq 0}$, and let T be a finite time change. The time-changed process X^T is defined as

$$X^T(s) := X(T_s)$$

X^T is $(\mathcal{G}_t)_{t \geq 0}$-adapted.

If X is $(\mathcal{F}_t)_{t \geq 0}$-independent from T, then for every $t \geq 0$ we have

$$\mathbb{E} \left[X^T(t) \right] = \int_0^\infty \mathbb{E} \left[X(s) \right] f(t, s) ds.$$

Furthermore, for $t > u \geq 0$,

$$\mathbb{E} \left[X^T(t) \mid \mathcal{G}_u \right] = \int_{T(u)}^\infty \mathbb{E} \left[X(s) \mid \mathcal{G}_u \right] f_u(t, s) ds.$$
The Post Time-Change Model

For each obligor $i = 1, \ldots, I$, the post time-changed default time is

$$\tau_i = \inf\{t \geq 0 \mid \int_0^{T(t)} \tilde{\lambda}_i(s) ds \geq E_i\}.$$

or equivalently,

$$\tau_i = \inf\{t \geq 0 \mid \tilde{\tau}_i \leq T(t)\}.$$

The filtration of the post time-change model is $(\mathcal{G}_t)_{t\geq0}$.
Survival Probabilities Post Time-Change

Integrate over all possible realisations of the time change:

\[
P_i(0, t) = \mathbb{P} [\tau_i > t] = \mathbb{E} \left[\mathbb{P} [\tau_i > t \mid T_t = s] \right]
\]

\[
= \int_0^\infty e^{-\int_0^s \tilde{\lambda}_i(u) du} f(t, s) ds.
\]

For constant \(\tilde{\lambda}_i \), the individual survival probabilities are

\[
P_i(0, t) = \mathbb{E} \left[\exp\{-\tilde{\lambda}_i T_t\} \right] =: \mathcal{L}_t(\tilde{\lambda}_i),
\]

where \(\mathcal{L}_t(c) = \mathbb{E} \left[e^{-cT(t)} \right] \) denotes the *Laplace transform* of \(T(t) \) for \(c \geq 0 \).
Cumulative Portfolio Loss Post Time-Change

Let $L(t) := \sum_{i=i}^{T} N_i(t)$. Then

$$\mathbb{P}\left[L^T(t) \leq x \right] = \mathbb{E}\left[\mathbb{P}\left[L(T(s)) \leq x \mid T_t = s \right] \right]$$

$$= \int_0^{\infty} F_L(x, s) f(t, s) ds,$$

where $F_L(x, s) = \mathbb{P}\left[L(s) \leq x \right]$ is the distribution of the pre time-change portfolio loss at time s.

- $F_L(x, s)$ can be found by semi-analytic convolution techniques.
- For different time changes and different post time-change reference points t, only the density $f(t, s)$ is different, the $F_L(x, s)$ remain the same.
Post Time-Change Intensities

If we can write T as

$$T_t = \int_0^t \alpha(s)ds$$

for some stochastic process α, then the default intensity $\lambda(t)$ of an obligor is given by:

$$\lambda_i(t) = \tilde{\lambda}_i(T_t)\alpha(T_t) = \tilde{\lambda}_i^T(t)\alpha^T(t).$$

It T has a jump of $\Delta = T(t) - T(t-)$, there can be simultaneous defaults of several obligors with positive probability, and the local survival probability of a given obligor $i \leq I$ is equal to

$$\exp\{-\int_{T_t-}^{T_t+\Delta} \lambda_i(s)ds\}. $$
Qualitative Properties

\(\alpha \gg 0 \) Fast clock: (e.g. 1 post year \(\approx \) 10 pre years)

Recession: Many more events than average, more volatility, defaults cluster.

\(\alpha \approx 0 \) Slow clock: (e.g. 1 post year \(\approx \) 1 pre day)

Boon: Fewer events, low volatility, clustering of survivals.

- Realistic default dependence.
- Realistic connection between volatility and default rate.
- No lower bounds on default rates or conditional PDs.
Overview

1. Introduction

2. Current Multivariate Intensity Models

3. Time-Changed Intensity Models

4. Possible Specifications of Time Changes

5. Implementation

Intensity-Gamma (IG) Time Change

In the IG model (Joshi and Stacey [2005]), the time change is a Gamma process with mean $\mu = 1$. Thus, $T(t) \sim G\left(\frac{t}{\nu}; \nu\right)$. Its density is:

$$f^{IG}(t, s; \nu) = \frac{1}{\nu t^{\nu} \Gamma\left(\frac{t}{\nu}\right)} s^{\frac{t}{\nu} - 1} \exp\left\{-\frac{s}{\nu}\right\}.$$

- Gamma processes have i.i.d. increments and possibly large jumps.
- Dependence arises from joint defaults at the jump times of T.
- I.i.d. increments imply constant spreads.
- JS also consider sums of Gamma processes
- JS use Monte-Carlo to solve numerically (inefficient)
Frailty Time Changes

\[T(t) = t \cdot Y \]

where \(Y \) is a nonnegative random variable with distribution \(F_Y(y) \), density \(f_Y(y) \) (if it exists), and \(\mathbb{E}[Y] = 1 \).

\[F(t, s) = \mathbb{P}[T(t) \leq s] = \mathbb{P}[Y \leq s/t] = F_Y(s/t), \]
\[f(t, s) = \frac{1}{t} f_Y(s/t). \]

- Examples: Gamma distribution (Clayton copula), discrete, lognormal ("Cox proportional hazards model")
- If we use on the post time-change model a filtration that is generated only by the default events, then we will have information-based default contagion. (That filtration is smaller than \((\mathcal{G}_t)_{t \geq 0} \).)
- Can be extended to (over time) piecewise-constant \(Y \).
Continuous Stochastic Time Changes

\[T_t := \int_0^t \alpha(s) ds. \]

- For single-obligor risk, any intensity-based model can be represented with a time-change (just choose \(\tilde{\lambda}_i = \text{const} \) and specify a suitable \(\alpha(t) \)).
- Need large volatility in \(\alpha \), e.g. jumps in \(\alpha \) to fit senior tranches:
 - Shot-noise process
 - Exponentially distributed jumps, triggered by Poisson process (e.g. Mortensen [2005])
 - Affine jump-diffusion processes.

In these cases, the Laplace transform of the distribution of \(T_t \) is known.
Weighted Sums of Time Changes

A *weighted sum* of time changes is achieved by setting

$$T(t) = \sum_{z=1}^{Z} w_z T_z(t)$$

where $w_z \geq 0$ are the weights of the individual time changes. Density and/or distribution of T by Fourier/Laplace inversion of:

$$E \left[e^{-cT(t)} \right] = \prod_{z=1}^{Z} E \left[e^{-cw_zT_z(t)} \right].$$
Mixtures of Time Changes

A mixture of Z time changes T_1, \ldots, T_Z with mixing probabilities $p_z, z \leq Z$ is reached using a discrete random variable $X(\omega) \in \{1, \ldots, Z\}$ with distribution $\mathbb{P} [X = z] = p_z$ and setting

$$T(t) = T_X(t).$$

- The density (distribution) of $T(t)$ is simply the p_z-weighted average of the densities (distributions) of the $T_z(t)$.
- Event probabilities and prices of credit derivatives will become weighted averages of the respective prices conditional on $X = z$.

Grouped Time Changes:

Let T be a common time change and T_g independent group-specific time changes (e.g. global vs. sector time-change). The individual i from group $g(i)$ is time-changed with

$$T_i(t) := T_g(i) (T(t)).$$

The common time-change $T(t)$ must be performed before the groupwise idiosyncratic time change $T_g(\cdot)$, otherwise some groups will be able to look into the future.

The density of $T_i(t)$ is reached by convolution:

$$f_i(t, u) = \int_0^\infty f(t, s) f_g(s, u) ds.$$
Overview

1. Introduction
2. Current Multivariate Intensity Models
3. Time-Changed Intensity Models
4. Possible Specifications of Time Changes
5. Implementation
General Remarks On Implementation

- Conditional independence.
- Stochastic dynamics of λ_i can be added after calibration of the model to the marginal P_i.
- Iterative calibration (similar to other intensity models) is possible: Calibrate STCDO and CDS curves separately and iteratively.
- Re-using time points makes STCDO pricing highly efficient.
- Need to integrate over distribution of T_t.
STCDO Pricing Problem

STCDO pricing requires at all times $t \leq T$ before maturity knowledge of the distribution F^L of the cumulative portfolio loss L

$$F^L(t, x) = \mathbf{P} [L(t) \leq x]$$

We denote the conditional loss distribution with

$$F^{CY}_{n} (t_k, \cdot) = \mathbf{P} [L(t) \leq x \mid Y = y_n]$$

If defaults are independent, the conditional portfolio loss distribution can be found in $O(I^2)$ operations using standard recursive algorithms.
Typical Numerical Efforts

In a standard factor model (e.g. Gauss copula), unconditional loss distributions are found with the following algorithm:

- Discretize time \(t \in \{0 = t_0, \ldots, t_{K_t}\} \)
- Discretize the conditioning factor \(Y \in \{y_0, \ldots, y_{K_y}\} \), and its distribution with quadrature weights \(w^y_n \).
- Approximate

\[
F^L(t_k, \cdot) \approx \sum_{n=0}^{K_y} w^y_n F^{CY}_n (t_k, \cdot)
\]

Total effort: \(K_t \approx 40 - 80, I \approx 125, K_y \approx 80 \)

\[
K_y \cdot K_t \cdot O(I^2).
\]
Numerical Effort in a Time-Changed Intensity Model

- Discretize real-time $t \in \{0 = t_0, \ldots, t_{K_t}\}$
- Discretize pre time-change time $s \in \{0 = s_0, \ldots, s_{K_s}\}$
- Calculate the pre time-change loss distributions: $K_s \cdot O(I^2)$

$$F^{TL}(s_k, x) = P[L(s_k) \leq x]$$

- Integrate the loss distributions to post time-change loss distributions: $K_t \cdot K_s$

Total effort: $K_t \approx 40 - 80$, $I \approx 125$, $K_s \approx 3K_t$

$$K_s \cdot O(I^2) + K_t \cdot K_s$$

We gained one order of magnitude by re-using results from previous time points.
Calibration Equations

Linear problem for individual CDS:
Given time-change parameters θ, find probabilities $P_i^C(s) := e^{-\Lambda_i(s)}$ s.t.

$$P_i(t_l) = \int_0^\infty e^{-\Lambda_i(s)} f(t, s; \theta) ds =: \int_0^\infty P_i^C(s) f(t, s; \theta) ds.$$

Re-weighting problem for STCDOs: Given $P_i^C(s)$

- construct the pre-TC loss distribution $F^{TL}(s_k, x)$ (only *once*).
- ... and find parameters θ (iteratively) of the time-change such that STCDOs are priced correctly.

The pre-TC loss distribution ($K_s \cdot O(I^2)$ effort) only has to be calculated *once*, changing TC parameters amounts to re-weighting.
Calibration

1. **Initialization:**
 Choose initial TC parameters θ_0, and set $m = 0$.

2. **Iteration:** $m \rightarrow m + 1$
 - Calibrate single-name survival probabilities, given θ_m (linear)
 - Construct new pre-TC loss distribution.
 - If error in STCDO pricing is small, **EXIT** calibration loop.
 - Else: Find θ_{m+1} which minimizes the STCDO pricing error
 - Repeat.

Fixed-point is a fully calibrated model.
Preliminary numerical studies indicate significantly quicker convergence than global optimization.
The opinions and statements made in this presentation represent the personal opinions of the author (Philipp Schönbucher), and not of his current or his former employer(s), nor does it represent the opinion of any entities associated with his current or former employers.

This presentation is prepared for educational purposes to explain certain aspects of the mathematical methods and models discussed. You will have to adjust and modify these models if you want to apply them in a real-world context. The author has done his best to point out where and how this might be done, but you do so at your own risk. You are welcome to ask the author.

This presentation provides general information only. It may not be complete and up to date for your purposes. It is not intended as financial advice or as an offer or recommendation of securities or other financial products. You should obtain independent financial advice that addresses your particular investment objectives, financial situation and needs before making investment decisions.

Although care has been taken to ensure the accuracy of the information presented, errors may still be present in this presentation. The information in this presentation has been derived from sources believed to be accurate and reliable, but it has not been independently verified. Accordingly no representation or warranty of reliability, completeness, correctness, appropriateness for a particular purpose, or accuracy of such information is given. The author or his employer are not liable for loss or damage of any kind whatsoever arising as a result of the usage of this presentation, or as a result of any opinion or information expressly or implicitly published in this presentation.

This presentation is provided as is, and you assume all risks when using the information contained in it.

Raquel Gaspar and Thorsten Schmidt. Quadratic models for portfolio credit risk with shot-noise effects. SSE/EFI working paper series in economics and finance, no 616, 2005.

