Filtration Shrinkage and Credit Risk
Second Princeton Credit Risk Conference, May 2008

Philip Protter, Cornell University

May 23, 2008
Credit Risk

Credit risk investigates an entity (corporation, bank, individual) that borrows funds, promises to return them in a specified contractual manner, and who may not do so (default).

Mathematical framework: \((\Omega, \mathcal{G}, P, \mathcal{G})\) are given,
\[\mathcal{G} = (\mathcal{G}_t)_{t \geq 0}, 0 \leq t \leq T, \] usual hypotheses. For sake of this talk, let us consider a firm. The asset value process is

\[
dA_t = A_t \alpha(t, A_t) dt + A_t \sigma(t, A_t) dW_t
\]

where \(\alpha\) and \(\sigma\) are such that \(A\) exists, is well defined, and positive.

Assume the liability structure of the firm is a single zero-coupon bond with maturity \(T\) and face value 1, and default occurs only at time \(T\), and only if \(A_T \leq 1\).
• The probability of default is $P(A_T \leq 1)$.
• The probability of default is $P(A_T \leq 1)$.

• Time zero value of the firm’s debt is

$$v(0, T) = E_Q((A_T \land 1 \exp(-\int_0^T r_s ds)))$$.

This is the Black-Scholes-Merton model (from the early 1970s) viewed as a European call option on the firm’s assets, maturity T, and strike price equal to the value of the debt.
• The probability of default is \(P(A_T \leq 1) \).
• Time zero value of the firm’s debt is

\[
\nu(0, T) = E_Q((A_T \wedge 1) \exp(-\int_0^T r_s ds)).
\]

This is the Black-Scholes-Merton model (from the early 1970s) viewed as a European call option on the firm’s assets, maturity \(T \), and strike price equal to the value of the debt.
• The Black-Scholes-Merton model has been extended to default before time \(T \) by considering a barrier \(L = (L_t)_{t \leq 0} \). Augment the information to include the \(L \) information. Let \(\mathcal{H}_t = \sigma(A_s, L_s; s \leq t) \).
• Default time becomes a first passage time relative to the barrier L:

$$\tau = \inf\{t > 0 : A_t \leq L_t\}.$$
• Default time becomes a first passage time relative to the barrier L:

$$
\tau = \inf \{ t > 0 : A_t \leq L_t \}.
$$

• The value of the firm’s debt is

$$
v(0, T) = E \left[\left\{ 1_{\{t \leq T\}} L_\tau + 1_{\{\tau > T\}} 1 \right\} \exp(- \int_0^T r_s ds) \right].
$$
• Default time becomes a first passage time relative to the barrier L:
\[
\tau = \inf\{t > 0 : A_t \leq L_t\}.
\]

• The value of the firm’s debt is
\[
v(0, T) = E \left[\left\{ 1_{\{t \leq T\}} L_\tau + 1_{\{\tau > T\}} 1 \right\} \exp(-\int_0^T r_s ds) \right].
\]

• The previous models are known as the **structural approach** to credit risk. The default time is predictable.
• Alternative: the **reduced form** approach of Jarrow–Turnbull, and Duffie–Singleton, of the 1990s. The observer sees only the filtration generated by the default time τ and a vector of state variables X_t.

\[F_t = \sigma(\tau \wedge s, X_s; s \leq t) \subset G_t \]
• Alternative: the **reduced form** approach of Jarrow–Turnbull, and Duffie–Singleton, of the 1990s. The observer sees only the filtration generated by the default time \(\tau \) and a vector of state variables \(X_t \).

\[
\mathcal{F}_t = \sigma(\tau \wedge s, X_s; s \leq t) \subset \mathcal{G}_t
\]

• Assume a trading economy with a risky firm with outstanding debt as zero coupon bonds
Assuming no arbitrage (but not completeness), there is an equivalent local martingale measure \(Q \).
• Alternative: the **reduced form** approach of Jarrow–Turnbull, and Duffie–Singleton, of the 1990s. The observer sees only the filtration generated by the default time \(\tau \) and a vector of state variables \(X_t \).

\[
\mathcal{F}_t = \sigma(\tau \wedge s, X_s; s \leq t) \subset \mathcal{G}_t
\]

• Assume a trading economy with a risky firm with outstanding debt as zero coupon bonds. Assuming no arbitrage (but not completeness), there is an equivalent local martingale measure \(\mathcal{Q} \).

• Let

\[
M_t = 1_{\{t \geq \tau\}} - \int_0^t \lambda_s ds = a \quad \mathcal{Q} \quad \mathcal{F} - \text{martingale.}
\]

Recovery rate given by \((\delta_t)_{0 \leq t \leq T}\); So change \(\mathcal{F} \):

\[
\mathcal{F}_t = \sigma(\tau \wedge s, X_s, \delta_s; s \leq t) \subset \mathcal{G}_t
\]

\[
\mathcal{F}^X_t = \sigma(X_s; s \leq t).
\]
Default prior to time T:

$$Q(\tau \leq T) = E_Q \left\{ E_Q(N_T = 1|\mathcal{F}^X) \right\}$$

$$= E_Q(\exp(-\int_0^T \lambda_s ds)),$$

and value of the firm’s debt is

$$\nu(0, T) = E \left\{ [1_{\{\tau \leq T\}} \delta_\tau + 1_{\{\tau > T\}} 1] \exp(-\int_0^T r_s ds) \right\}$$

The modeler does not see the process $A = (A_t)_{t \geq 0}$, but has instead only partial information. How does one model this partial information?
There are three main approaches, in general:

1. **Duffie-Lando, Kusuoka**: Observe A only at discrete intervals, and add independent noise.

2. With Kusuoka, a twist is given by introduction of filtration expansion.

3. **Giesecke-Goldberg**: The default barrier is a *random* curve; but A is still assumed to observed continuously.

4. **Çetin-Jarrow-Protter-Yildirim**: Begin with a structural model under \mathbb{G}, and then project onto smaller filtration \mathbb{F}; Use of cash flows.
We are interested in the filtration shrinkage approach.
• We are interested in the **filtration shrinkage approach**

• Following Çetin-Jarrow-Protter-Yildiray, consider the **cash balance** of the firm.
We are interested in the filtration shrinkage approach. Following Çetin-Jarrow-Protter-Yildiray, consider the cash balance of the firm.

X denotes the cash balance of the firm, normalized by the money market account

$$dX_t = \sigma dW_t, \quad X_0 = x,$$

where $x > 0, \sigma > 0$

$\mathcal{Z} = \{ t \in [0, T] : X_t = 0 \}$

$g_t = \sup\{s \leq t : X_s = 0; g_t \text{ is the last time before } t \text{ cash balance is zero}\}$

$\tau_{\alpha} = \inf\{t > 0 : t - g_t \geq \frac{\alpha^2}{2} : X_s < 0, \text{ all } s \in (g_{t-}, t)\}$

τ_{α} represents the time of potential default

τ is the time of default;
• We are interested in the **filtration shrinkage approach**

• Following Çetin-Jarrow-Protter-Yildiray, consider the **cash balance** of the firm.

• X denotes the cash balance of the firm, normalized by the money market account

$$dX_t = \sigma dW_t,\quad X_0 = x,$$

where $x > 0, \sigma > 0$

$\mathcal{Z} = \{t \in [0, T] : X_t = 0\}$

$g_t = \sup\{s \leq t : X_s = 0;\ g_t$ is the last time before t cash balance is zero

$\tau_\alpha = \inf\{t > 0 : t - g_t \geq \frac{\alpha^2}{2} : X_s < 0,\ \text{all}\ s \in (g_t-, t)\};$

τ_α represents the time of potential default

τ is the time of default;

• Assume

$$\tau = \inf\{t > \tau_\alpha : X_t = 2X_{\tau_\alpha}\}$$
• We are interested in the **filtration shrinkage approach**

• Following Çetin-Jarrow-Protter-Yildiray, consider the **cash balance** of the firm.

• \(X \) denotes the cash balance of the firm, normalized by the money market account

\[
dX_t = \sigma dW_t, \quad X_0 = x, \quad \text{where} \quad x > 0, \sigma > 0
\]

\(\mathcal{Z} = \{ t \in [0, T] : X_t = 0 \} \)

\(g_t = \sup\{ s \leq t : X_s = 0 ; \quad g_t \text{ is the last time before } t \text{ cash balance is zero} \} \)

\(\tau_\alpha = \inf\{ t > 0 : t - g_t \geq \frac{\alpha^2}{2} : X_s < 0, \quad \text{all} \quad s \in (g_t -, t) \}; \)

\(\tau_\alpha \) represents the time of potential default

\(\tau \) is the time of default;

• Assume

\[
\tau = \inf\{ t > \tau_\alpha : X_t = 2X_{\tau_\alpha} \}
\]

• But, the investor does not see the entire cash balance process.
• In ČJPY the investor sees only when the balances are positive or negative, and whether or not the cash balances are above or below the default threshold.
• In ЄJPY the investor sees only when the balances are positive or negative, and whether or not the cash balances are above or below the default threshold.

• Default threshold: $2X_{\tau_\alpha}$
• In ĊJPY the investor sees only when the balances are positive or negative, and whether or not the cash balances are above or below the default threshold.

• Default threshold: $2X_{\tau_\alpha}$

• $Y_t = \begin{cases} X_t & \text{for } t < \tau_\alpha \\ 2X_{\tau_\alpha} - X_t & \text{for } t \geq \tau_\alpha \end{cases}$

Y defined this way is an \mathbb{F} Brownian motion
• In ЈJ PY the investor sees only when the balances are positive or negative, and whether or not the cash balances are above or below the default threshold.

• Default threshold: $2X_{\tau} $

• $Y_t = \begin{cases}
X_t & \text{for } t < \tau \\
2X_{\tau} - X_t & \text{for } t \geq \tau
\end{cases}$

Y defined this way is an F Brownian motion.

• $\tau = \inf\{t \geq \tau : Y_t = 0\}$. $\text{sign}(x) = \begin{cases}
1 & \text{if } x > 0 \\
-1 & \text{if } x \leq 0
\end{cases}$
In C¥J¥P¥ the investor sees only when the balances are positive or negative, and whether or not the cash balances are above or below the default threshold.

- Default threshold: $2X_{\tau_\alpha}$

- $Y_t = \begin{cases}
X_t & \text{for } t < \tau_\alpha \\
2X_{\tau_\alpha} - X_t & \text{for } t \geq \tau_\alpha
\end{cases}$

Y defined this way is an F Brownian motion

- $\tau = \inf\{t \geq \tau_\alpha : Y_t = 0\}$. $\text{sign}(x) = \begin{cases}
1 & \text{if } x > 0 \\
-1 & \text{if } x \leq 0
\end{cases}$

- G is the filtration of $\text{sign}(Y_t)$
• $N_t = 1_{\{t \geq \tau\}}$ with \mathcal{G} compensator A
• $N_t = 1_{\{t \geq \tau\}}$ with \mathcal{G} compensator A
• $N_t = 1_{\{t \geq \tau\}}$ with \mathbb{G} compensator A

Theorem
$A_t = \int_0^{t \wedge \tau} \lambda_s \, ds$, and moreover $\lambda_t = 1_{\{t > \tau \text{g.a.}\}} \frac{1}{2(t - \tilde{g}_t)}, 0 \leq t \leq \tau$, and where $\tilde{g}_t = \sup\{s \leq t : Y_s = 0\}$.

Nota Bene: We are able to calculate λ_t explicitly since we have a formula for the Azéma martingale. Use knowledge of λ_t to calculate quantities of interest. Simple example: price of a risky zero coupon bond at time 0: $S_0 = \exp\left(-\int_0^T r_u \, du\right) \left\{1 - \left(Q(\tau \alpha \leq T) - E(\alpha/\sqrt{2} \sqrt{T - \tilde{g}_\tau \alpha} \cdot 1_{\{\tau \alpha \leq T\}})\right)\right\}$.
\[N_t = 1_{t \geq \tau} \] with \(\mathbb{G} \) compensator \(A \)

Theorem
\[
A_t = \int_0^{t \land \tau} \lambda_s ds, \quad \text{and moreover} \quad \lambda_t = 1_{t > \tau^g a} \frac{1}{2(t - \tilde{g}_t)}, \quad 0 \leq t \leq \tau,
\]
and where \(\tilde{g}_t = \sup\{s \leq t : Y_s = 0\} \).

Nota Bene: We are able to calculate \(\lambda \) explicitly since we have a formula for the Azéma martingale.
• $N_t = 1_{\{t \geq \tau\}}$ with \mathcal{G} compensator A

Theorem

$A_t = \int_0^{t\wedge \tau} \lambda_s ds$, and moreover $\lambda_t = 1_{\{t > \tau_{ga}\}} \frac{1}{2(t-\tilde{g}_t)}$, $0 \leq t \leq \tau$, and where $\tilde{g}_t = \sup\{s \leq t : Y_s = 0\}$.

• **Nota Bene:** We are able to calculate λ explicitly since we have a formula for the Azéma martingale.

• Use knowledge of λ to calculate quantities of interest. Simple example: price of a risky zero coupon bond at time 0:

$$S_0 = \exp(-\int_0^T r_u du) \left\{1 - \left(Q(\tau_\alpha \leq T) - E\left(\frac{\alpha/\sqrt{2}}{\sqrt{T - \tilde{g}_{\tau_\alpha}}} 1_{\{\tau_\alpha \leq T\}}\right)\right)\right\}$$
Default occurs not at time τ_α, but at time τ. The default time τ is, therefore, less likely than the hitting time τ_α. The probability $\mathbb{Q} [\tau_\alpha \leq T]$ is reduced to account for this difference.
• The preceding is both artificial and simple. Let us consider a more realistic situation. Use of Markov process theory and homogeneous regenerative sets (theory of Mémin and Jacod).
• The preceding is both artificial and simple. Let us consider a more realistic situation. Use of Markov process theory and homogeneous regenerative sets (theory of Mémin and Jacod).

• Instead of just using when the cash flow is positive or negative, we can look at when it crosses a grid of barriers. And instead of looking at just Brownian motion as cash flows, we can consider a diffusion X.

• F denotes the information from the crossings. g_t denotes the last exit time before t that X crosses a level set in our collection. $U_t = t - g_t$ is the since since last exit. F can be thought of as generated by $(X_{g_t}, \text{sign}(X_t - X_{g_t}) U_t)_{t \geq 0}$.
• The preceding is both artificial and simple. Let us consider a more realistic situation. Use of Markov process theory and homogeneous regenerative sets (theory of Mémin and Jacod).

• Instead of just using when the cash flow is positive or negative, we can look at when it crosses a grid of barriers. And instead of looking at just Brownian motion as cash flows, we can consider a diffusion X.

• \mathcal{F} denotes the information from the crossings. g_t denotes the last exit time before t that X crosses a level set in our collection. $U_t = t - g_t$ is the since since last exit. \mathcal{F} can be thought of as generated by $(X_{g_t}, \text{sign}(X_t - X_{g_t})U_t)_{t \geq 0}$.
We discuss upward and downward excursions, and where they end up. For each type of excursion there corresponds a Lévy measure on $(0, \infty]$, which we denote by $F_i^{j\pm}$

$A^+ (\text{resp. } A^-)$ is for an upward (resp. downward) excursion

$j = 0 (\text{resp. } 1)$ is for an excursion ending at x_i (resp. $x_{i \pm 1}$).

These measures are constructed using the excursion measure n_i of X at x_i.
• We discuss upward and downward excursions, and where they end up. For each type of excursion there corresponds a Lévy measure on \((0, \infty]\), which we denote by \(F_{i}^{j\pm}\).

A (+) (resp. (−)) is for an upward (resp. downward) excursion

\(j = 0\) (resp. 1) is for an excursion ending at \(x_{i}\) (resp. \(x_{i\pm1}\)).

These measures are constructed using the excursion measure \(n_{i}\) of \(X\) at \(x_{i}\).
• We discuss upward and downward excursions, and where they end up. For each type of excursion there corresponds a Lévy measure on \((0, \infty]\), which we denote by \(F^j_{x}^{\pm}\).

\(A^+)\) (resp. \((-)\)) is for an upward (resp. downward) excursion

\(j = 0\) (resp. \(1\)) is for an excursion ending at \(x_i\) (resp. \(x_{i\pm1}\)).

These measures are constructed using the excursion measure \(n^i\) of \(X\) at \(x_i\).

•

Theorem

\(P\) almost surely, for all \(0 < t < \tau\),

\[
A_t = \begin{cases}
A_{gt} & \text{if } X_t \geq x_2 \\
A_{gt} + \int_0^U t \frac{F_2^{-1}(dx)}{F_2^{-}[x,\infty)} & \text{if } x_1 < X_t < x_2
\end{cases}
\]
• If the measure F_{2}^{1-} is absolutely continuous with respect to Lebesgue measure with density f_{2}^{1-} then

$$\lambda(t) = \begin{cases}
0 & \text{if } X_t \geq x_2 \\
\frac{f_{2}^{1-}(U_t)}{F_{2}^{-}[U_t,\infty)} & \text{if } x_1 < X_t < x_2
\end{cases}$$

is the intensity process (conditional hazard rate), i.e.

$$A(t) = \int_{0}^{t} \lambda(s)ds.$$
• If the measure $F_2^{1−}$ is absolutely continuous with respect to Lebesgue measure with density $f_2^{1−}$ then

$$\lambda(t) = \begin{cases}
0 & \text{if } X_t \geq x_2 \\
\frac{f_2^{1−}(U_t)}{F_2^−[U_t,\infty)} & \text{if } x_1 < X_t < x_2
\end{cases}$$

is the intensity process (conditional hazard rate), i.e. $A(t) = \int_0^t \lambda(s)ds$.

• Let $Y_t = E(1_{\{\tau \leq T\}}|\mathcal{F}_t)$. We can find an explicit formula for Y as well.
• We can then calculate prices of risky zero-coupon bonds: $v(t, T)$ is the price at time t of a zero-coupon bond maturing at time T.

\[v_{\text{mgmt}}(t, T) = E\left[\{ \delta 1_{\{\tau \leq T\}} \} + (1 - 1_{\{\tau \leq T\}}) \right] e^{-\int_t^T r_s ds} |G_t] = 1 - \left(1 - \delta \right) E[1_{\{\tau \leq T\}} |G_t] e^{-\int_t^T r_s ds} = 1 - \left(1 - \delta \right) p(X_t, t) e^{-\int_t^T r_s ds} \] for $t < T \land \tau$, where the last equality follows from the Markov property.
We can then calculate prices of risky zero-coupon bonds: $
u(t, T)$ is the price at time t of a zero-coupon bond maturing at time T.

Management value of the bond:

$$

\nu^{mgmt}(t, T) = \mathbb{E}\left[\{\delta_1\{\tau \leq T\} + (1 - 1\{\tau \leq T\})\} e^{-\int_t^T r_s ds} | G_t}\right]

= \mathbb{E}\left[\{\delta_1\{\tau \leq T\} + (1 - 1\{\tau \leq T\})\} e^{-\int_t^T r_s ds} | G_t}\right]

= 1 - [(1 - \delta)\mathbb{E}[1\{\tau \leq T\}| G_t]] e^{-\int_t^T r_s ds}

= 1 - [(1 - \delta)p(X_t, t)] e^{-\int_t^T r_s ds}

for $t < T \wedge \tau$, where the last equality follows from the Markov property.
• Market value of the same bond:

\[\nu(t, T) = [1-(1-\delta)]E[1\{\tau \leq T\}|F_t]e^{-\int_t^T r_s ds} = [1-(1-\delta)]Y_t e^{-\int_t^T r_s ds} \]
• Market value of the same bond:

\[\nu(t, T) = [1-(1-\delta)] E[1_{\{\tau \leq T\}}|\mathcal{F}_t]e^{-\int_t^T r_s ds} = [1-(1-\delta)] Y_t e^{-\int_t^T r_s ds} \]

• In contrast to the management’s using only \(X_t\) and \(T-t\) to determine the price, the market evaluates the price using the following variables: \(X_{gt}\), \(U_t\), \(R(X_t)\), and \(T-t\).
Theoretical considerations for Filtration Shrinkage

- **Question:** If No Free Lunch with Vanishing Risk (NFLVR) holds for \((\Omega, X, \mathcal{G}, P, \mathcal{G})\), does it also hold for \(\mathcal{F}\)?
Theoretical considerations for Filtration Shrinkage

- **Question:** If No Free Lunch with Vanishing Risk (NFLVR) holds for $(\Omega, X, \mathcal{G}, P, \mathcal{G})$, does it also hold for \mathcal{F}?

- Recall that NFLVR holds if and only if there exists $Q \sim P$ such that X is a (Q, \mathcal{G}) sigma martingale. If $X \geq 0$ a.s., then it is enough that X be a (Q, \mathcal{G}) local martingale.
Theoretical considerations for Filtration Shrinkage

- **Question:** If No Free Lunch with Vanishing Risk (NFLVR) holds for $(\Omega, X, \mathcal{G}, P, \mathcal{G})$, does it also hold for \mathcal{F}?

- Recall that NFLVR holds if and only if there exists $Q \sim P$ such that X is a (Q, \mathcal{G}) sigma martingale. If $X \geq 0$ a.s., then it is enough that X be a (Q, \mathcal{G}) local martingale.

- **Old results of Stricker:**
Theoretical considerations for Filtration Shrinkage

- **Question:** If No Free Lunch with Vanishing Risk (NFLVR) holds for \((\Omega, X, \mathcal{G}, P, \mathcal{G})\), does it also hold for \(\mathcal{F}\)?
- Recall that NFLVR holds if and only if there exists \(Q \sim P\) such that \(X\) is a \((Q, \mathcal{G})\) sigma martingale. If \(X \geq 0\) a.s., then it is enough that \(X\) be a \((Q, \mathcal{G})\) local martingale.
- Old results of Stricker:

Theorem

Let \(X\) be a semimartingale for a filtration \(\mathcal{G}\) and let \(\mathcal{F}\) be a subfiltration of \(\mathcal{G}\) such that \(X\) is adapted to \(\mathcal{F}\). Then \(X\) remains a semimartingale for \(\mathcal{F}\).
Theoretical considerations for Filtration Shrinkage

- **Question:** If No Free Lunch with Vanishing Risk (NFLVR) holds for $(\Omega, X, \mathcal{G}, P, \mathcal{G})$, does it also hold for F?

- Recall that NFLVR holds if and only if there exists $Q \sim P$ such that X is a (Q, \mathcal{G}) sigma martingale. If $X \geq 0$ a.s., then it is enough that X be a (Q, \mathcal{G}) local martingale.

- Old results of Stricker:

Theorem

*Let X be a semimartingale for a filtration \mathcal{G} and let F be a subfiltration of \mathcal{G} such that X is adapted to F. Then X remains a semimartingale for F.***
Theoretical considerations for Filtration Shrinkage

- **Question:** If No Free Lunch with Vanishing Risk (NFLVR) holds for \((\Omega, X, \mathcal{G}, P, \mathcal{G})\), does it also hold for \(F\)?

- Recall that NFLVR holds if and only if there exists \(Q \sim P\) such that \(X\) is a \((Q, \mathcal{G})\) sigma martingale. If \(X \geq 0\) a.s., then it is enough that \(X\) be a \((Q, \mathcal{G})\) local martingale.

- Old results of Stricker:

Theorem

Let \(X\) be a semimartingale for a filtration \(\mathcal{G}\) and let \(F\) be a subfiltration of \(\mathcal{G}\) such that \(X\) is adapted to \(F\). Then \(X\) remains a semimartingale for \(F\).

Theorem

Let \(X\) be a positive, \(\mathcal{G}\) local martingale. Let \(F\) be a subfiltration, and assume that \(X\) is adapted to \(F\). Then \(X\) is an \(F\) supermartingale, and if \(X\) is an \(F\) special supermartingale, then \(X\) is an \(F\) local martingale.
What if X is not adapted to F?

Simple results:

•
What if X is not adapted to F?

Simple results:

- **Theorem**

 Let X be a martingale for a filtration G and let F be any subfiltration of G. Then the optional projection of X onto F is again a martingale, for the filtration F.
What if X is not adapted to \mathcal{F}?

Simple results:

-

Theorem

Let X be a martingale for a filtration \mathcal{G} and let \mathcal{F} be any subfiltration of \mathcal{G}. Then the optional projection of X onto \mathcal{F} is again a martingale, for the filtration \mathcal{F}.

-

What if X is not adapted to F?

Simple results:

- **Theorem**
 Let X be a martingale for a filtration G and let F be any subfiltration of G. Then the optional projection of X onto F is again a martingale, for the filtration F.

- **Theorem**
 Let X be a local martingale for a filtration G and let F be any subfiltration of G. If a sequence of reducing stopping times $(T_n)_{n \geq 1}$ for X in G are also stopping times in F, then the optional projection of X onto F is again a local martingale, for the filtration F.
Theorem
If X is a G-semimartingale, and F is a subfiltration of G, then $\mathcal{O}X$ is an F-semimartingale, where $\mathcal{O}X$ denotes the optional projection of X onto F.

Theorem
Let $X > 0$ be a G-supermartingale. Then $\mathcal{O}X$ is an F-supermartingale.

Before stating the next theorem, we need a result of Protter-Shimbo:
Theorem

If X is a \mathcal{G} semimartingale, and \mathcal{F} is a subfiltration of \mathcal{G}, then $\circ X$ is an \mathcal{F} semimartingale, where $\circ X$ denotes the optional projection of X onto \mathcal{F}.

Before stating the next theorem, we need a result of Protter-Shimbo:
Theorem

If X is a \mathbb{G} semimartingale, and \mathbb{F} is a subfiltration of \mathbb{G}, then $\circ X$ is an \mathbb{F} semimartingale, where $\circ X$ denotes the optional projection of X onto \mathbb{F}.
Theorem
If \(X \) is a \(\mathcal{G} \) semimartingale, and \(\mathcal{F} \) is a subfiltration of \(\mathcal{G} \), then \(\circ X \) is an \(\mathcal{F} \) semimartingale, where \(\circ X \) denotes the optional projection of \(X \) onto \(\mathcal{F} \).

Theorem
Let \(X > 0 \) be a \(\mathcal{G} \) supermartingale. Then \(\circ X \) is an \(\mathcal{F} \) supermartingale.
Theorem
If X is a \mathbb{G} semimartingale, and \mathbb{F} is a subfiltration of \mathbb{G}, then $\circ X$ is an \mathbb{F} semimartingale, where $\circ X$ denotes the optional projection of X onto \mathbb{F}.

Theorem
Let $X > 0$ be a \mathbb{G} supermartingale. Then $\circ X$ is an \mathbb{F} supermartingale.

Before stating the next theorem, we need a result of Protter-Shimbo:
Theorem

Let M be a locally square integrable martingale such that $\Delta M > -1$. If

$$E \left[e^{\frac{1}{2} \langle M^c, M^c \rangle_T + \langle M^d, M^d \rangle_T} \right] < \infty,$$ \hspace{1cm} (1)

then $\mathcal{E}(M)$ is martingale on $[0, T]$, where T can be ∞.
Theorem

Let $X > 0$ be a local martingale relative to (P, \mathbb{G}). Let $\circ X$ be its optional projection onto a subfiltration \mathbb{F}. Then $\circ X$ is a supermartingale, and assume it is special, with canonical decomposition $\circ X_t = 1 + M_t - A_t$. Moreover assume that $\langle M, M \rangle$ exists, and that $dA_t \ll d\langle M, M \rangle_t$. Let $c_s \equiv \frac{dA_s}{d\langle M, M \rangle_s}$ and assume $c_s \Delta M_s > -1$, and

$$
E \left[e^{1/2 \int_0^T c_s^2 d\langle M^c, M^c \rangle_s + \int_0^T c_s^2 d\langle M^d, M^d \rangle_s} \right] < \infty.
$$

Then there exists a probability Q equivalent to P such that $\circ X$ is a (Q, \mathbb{F}) local martingale.
Corollary

Under the hypotheses of the previous theorem, there is NFLVR for (X, F).