Modelling of successive default events

Nicole El Karoui, CMAP, Ecole Polytechnique
Monique Jeanblanc, Université d’Évry, France
Ying Jiao, Ecole Supérieure d’Ingénieur Léonard de Vinci

Princeton, Credit Risk, May 2008
The aim of this talk is

- to give a general framework for multi-defaults modelling
- to obtain the dynamics of derivative products in a multiname setting.
The basic tool is the conditional law of the default(s) with respect to a reference filtration
Single Name
Notation

• G is the global market filtration,
• τ is a default time,
• $H_t = \mathbb{1}_{\tau \leq t}$ is the default processes,
• H is the natural filtration of H, with $H \subset G$,
• F is a reference filtration, with $F \subset G$.
On the set $\{\tau > t\}$: ”before-default”

$(\mathcal{F}, \mathcal{G}, \tau)$ satisfy the **minimal assumption (MA)** if

$\forall \, t \geq 0$ and $Z^G \in \mathcal{G}_t$, $\exists \, Z^F \in \mathcal{F}_t$ such that

$$Z^G \cap \{\tau > t\} = Z^F \cap \{\tau > t\}.$$

- If $\mathcal{G}^\tau := \mathcal{F} \lor \mathbb{H}$, then $(\mathcal{F}, \mathcal{G}^\tau, \tau)$ enjoys MA.

- Under MA, for any \mathcal{G}_∞-measurable (integrable) r.v. Y^G,

$$\mathbb{1}_{\{\tau > t\}} \mathbb{E}[Y^G | \mathcal{G}_t] = \mathbb{1}_{\{\tau > t\}} \frac{\mathbb{E}[Y^G \mathbb{1}_{\{\tau > t\}} | \mathcal{F}_t]}{\mathbb{P}(\tau > t | \mathcal{F}_t)} \quad a.s.$$

on the set $A := \{\omega : \mathbb{P}(\tau > t | \mathcal{F}_t)(\omega) > 0\}$.
On the set \(\{ \tau \leq t \} \): ”after-default”

1. We assume that \(G = G^\tau = F \vee H \)

2. **J-Hypothesis** (Jacod for enlargement of filtration purpose):

 We assume that there exists a family of \(F_t \otimes B(\mathbb{R}^+) \) r.v.s \(\alpha_t(\theta) \) such that

 \[
 \mathbb{P}(\tau \in d\theta|F_t) = \alpha_t(\theta)d\theta \quad d\theta \otimes d\mathbb{P} - a.s.
 \]

 and for any \(\theta \) the process \(\alpha_t(\theta), t \geq 0 \) is a right-continuous martingale

Under the above hypotheses, we can compute \(G_t \)-conditional expectations on the set \(\{ \tau \leq t \} \)

A ”weak version” of J-hypothesis consists of the existence of the density only for \(0 \leq t \leq \theta \). This is useful for before-default studies, but not sufficient for the after-default ones.
Density and \mathbb{F}-martingales

We assume J-hypothesis and introduce the càdlàg (super) martingales

- **Conditional survival process** ($S_t = \mathbb{P}(\tau > t|\mathcal{F}_t), t \geq 0$) (Azéma super-martingale)

- **Conditional probability process** ($S_t(\theta) = \mathbb{P}(\tau > \theta|\mathcal{F}_t), t \geq 0$).
 Note that, for $t \leq \theta$, one has $S_t(\theta) = \mathbb{E}[S_\theta|\mathcal{F}_t],\$

- **Family of martingales** (for $\theta \in \mathbb{R}$): the **densities** ($\alpha_t(\theta), t \geq 0$) of $S_t(\theta)$
Decompositions of Survival process S (super-martingale)

- The **Doob-Meyer decomposition** of S is $S_t = M^F_t - A^F_t$ with
 - the \mathcal{F}-martingale
 \[M^F_t = - \int_0^t (\alpha_t(u) - \alpha_u(u))du = S_t - S_0 + \int_0^t \alpha_u(u)du \]
 - the increasing process $A^F_t = \int_0^t \alpha_u(u)du$

- The **multiplicative decomposition** is
 \[S_t = L^F_t D^F_t \]
 where
 - The \mathcal{F}-martingale L^F is given as $dL^F_t = e^{\int_0^t \lambda^F_s ds} dM^F_t$
 - The decreasing process D^F is $D^F_t = \exp \left(- \int_0^t \lambda^F_s ds \right)$ where $\lambda^F_t = \frac{\alpha_t(t)}{S_t}$ on $\{S_t > 0\}$.
Links with the classical intensity approach

• The \mathbb{G}-intensity is the \mathbb{G}-adapted process λ^G such that
 $\left(1_{\{\tau \leq t\}} - \int_0^t \lambda^G_s ds, t \geq 0\right)$ is a \mathbb{G}-martingale.

• Under the weak version of J-Hypothesis,
 $\lambda_t^G = 1_{\{\tau > t\}} \lambda_t^F = 1_{\{\tau > t\}} \frac{\alpha_t(t)}{S_t^-} \text{ a.s..}$

• For any $\theta \geq t$,
 $\alpha_t(\theta) = \mathbb{E}[\lambda_{\theta}^G | \mathcal{F}_t] \text{ a.s..}$

Note that the intensity approach does not contain enough information
to study the after-default case (i.e. for $\theta < t$).
A characterization of \mathcal{G}-martingales

Any \mathcal{G}_t-measurable r.v. X can be written as

$$X = X_t \mathbb{1}_{\{\tau>t\}} + X_t(\tau) \mathbb{1}_{\{\tau\leq t\}}$$

where X_t and $X_t(\theta)$ are \mathcal{F}_t-measurable.

The process M^X is a \mathcal{G}-martingale if its decomposition as

$$M^X_t := X_t \mathbb{1}_{\{\tau>t\}} + X_t(\tau) \mathbb{1}_{\{\tau\leq t\}}$$

satisfies

- $(X_t S_t + \int_0^t X_s(s) \alpha_s(s) \, ds, t \geq 0)$ is an \mathcal{F}-martingale
- For any θ, $(X_t(\theta) \alpha_t(\theta), t \geq \theta)$ is an \mathcal{F}-martingale

Remark: The first condition is equivalent to:

$$X_t L^F_t - \int_0^t (X_s - X_s(s)) L^F_s \lambda^F_s \, ds$$

is an \mathcal{F}-martingale
Immersion hypothesis

Immersion holds if (and only if) any \(\mathbb{F} \)-martingale is a \(\mathbb{G} \)-martingale.

Under immersion hypothesis,

- \(\alpha_t(\theta) = \alpha_{t \wedge \theta}(\theta) \)
- \(S \) is a non-increasing process
- \(L^\mathbb{F} \) is a constant
- the process

 \[
 M_t^X := X_t \mathbb{1}_{\{\tau > t\}} + X_t(\tau) \mathbb{1}_{\{\tau \leq t\}}
 \]

 is a \(\mathbb{G} \)-martingale if

 (a) \(X_t(\theta) \) is a \(\mathbb{F} \)-martingale on \([\theta, \infty)\).

 (b) \(X_t - \int_0^t (X_s - X_s(s)) \lambda_s^\mathbb{F} \, ds \) is an \(\mathbb{F} \)-martingale
Toy Exemple: Cox process model

Let \(\tau = \inf \{ t : \Lambda_t := \int_0^t \lambda_s ds \geq \Theta \} \) where
\(\Lambda \) is an \(\mathbb{F} \)-adapted increasing process, \(\Lambda_0 = 0, \lim_{t \to \infty} \Lambda_t = +\infty \)

\(\Theta \) is a \(\mathcal{G} \)-measurable r.v. independent of \(\mathcal{F}_\infty \), \(\Theta_i \sim \exp(1) \).

\(\mathcal{F} \) is immersed in \(\mathcal{G} = \mathcal{F} \lor \mathcal{H} \).

The conditional distribution of \(\tau \) is

\[
\begin{cases}
\mathbb{P}(\tau > \theta | \mathcal{F}_t) = \mathbb{E}[e^{-\Lambda_\theta} | \mathcal{F}_t], & \text{for } \theta > t \\
\mathbb{P}(\tau > \theta | \mathcal{F}_t) = e^{-\Lambda_\theta}, & \text{for } \theta \leq t
\end{cases}
\]

and the density is

\[
\begin{cases}
\alpha_t(\theta) = \mathbb{E}[\lambda_\theta e^{-\Lambda_\theta} | \mathcal{F}_t], & \text{for } \theta > t \\
\alpha_t(\theta) = \lambda_\theta e^{-\Lambda_\theta}, & \text{for } \theta \leq t
\end{cases}
\]
Modelling the density process

Two possible solutions:

- Model $S_t(\theta) := \mathbb{P}(\tau > \theta | \mathcal{F}_t)$ and then take derivatives w.r.t. θ
- Model the density $\alpha_t(\theta)$ as a family of strictly positive martingales such that $\int_0^\infty \alpha_s(\theta) d\theta = 1$

Remarks:

- for fixed θ, both processes are positive \mathbb{F} martingales
- reference to the interest models
- distinction between $\theta \geq t$ (classical part) and $\theta < t$ (non-classical part)
F-martingale representation and HJM framework

Model the family of \mathbb{F}-martingales $S_t(\theta)$ in the HJM framework

Suppose

$$
\frac{dS_t(\theta)}{S_t(\theta)} = \Phi_t(\theta)dM_t, \quad t, \theta \geq 0
$$

where M is a continuous multi-dimensional \mathbb{F}-martingale, then

$S_t(\theta) = S_t(t) \exp\left(-\int_t^\theta \lambda_t(u)du\right)$ where $\lambda_t(\theta)$ is the forward intensity and

* $S_t(\theta) = S_0(\theta) \exp\left(\int_0^t \Phi_s(\theta)dM_s - \frac{1}{2} \int_0^t |\Phi_s(\theta)|^2 d\langle M \rangle_s\right)$;

* $S_t = \exp\left(-\int_0^t \lambda^F_s ds + \int_0^t \Phi_s(s)dM_s - \frac{1}{2} \int_0^t |\Phi_s(s)|^2 d\langle M \rangle_s\right)$.

* $\lambda_t(\theta) = \lambda_0(\theta) - \int_0^t \varphi_s(\theta)dM_s + \int_0^t \varphi_s(\theta)\Phi_s(\theta)d\langle M \rangle_s$.
For any $\theta \geq 0$, assume that $\lambda_0(\theta)$ is a family of positive probability densities.

Let $b(\theta)$ be a given family of non-negative \mathbb{F}-adapted processes. Define

$$\varphi_t(\theta) = -b_t(\theta)\lambda_0(\theta) \exp \left(\int_0^t b_s(\theta) dW_s - \frac{1}{2} \int_0^t b_s(\theta)^2 ds \right)$$

and let

$$\alpha_t(\theta) = \lambda_t(\theta) \exp \left(- \int_0^t \lambda_t(v) dv \right)$$

where $\lambda_t(\theta) = \lambda_0(\theta) - \int_0^\theta \varphi_s(\theta) dW_s + \int_0^t \varphi_s(\theta) \Phi_s(\theta) ds$.

Then the family $(\alpha_t(\theta), t \geq 0)$ is a density process.
Examples of martingale density process

- Compatibility between martingale and probability properties
 - the r.v. $S_t(\theta)$ is $[0, 1]$-valued
 - for any t, the map $\theta \to S_t(\theta)$ is non-increasing

- **A Generalized exponential model:** $\forall t, \theta \geq 0$, let

$$S_t(\theta) = \exp \left(-\theta M_t - \frac{1}{2} \theta^2 \langle M \rangle_t \right)$$

where M is an \mathcal{F}-martingale.

- Exponential law $S_0(\theta) = \mathbb{P}(\tau > \theta) = \exp(-\theta M_0)$.

- Probability condition: $M_t + \frac{1}{2} \theta \langle M \rangle_t \geq 0$
Comparison with interest rate modelling

- Zero-coupon $B(t, T) = \mathbb{E}[e^{-\int_t^T r_s ds} | \mathcal{F}_t]$.
 Short rate $r_t = -\partial_T |_{T=t} \log B(t, T)$.

- Defaultable zero-coupon without actualization

$$\mathbb{E}[\mathbb{1}_{\tau>T} | \mathcal{G}_t] = \mathbb{1}_{\tau>t} \mathbb{E}[S_T/S_t | \mathcal{F}_t] := \mathbb{1}_{\tau>t} B^\tau(t, T).$$

 Intensity $\lambda_t^\mathbb{F} = -\partial_T |_{T=t} \log B^\tau(t, T)$.
A general construction of density process. I.

1. Start with \mathbb{P}_0 with immersion hypothesis, and τ with density process $(\alpha_0^0(\theta), t \geq 0)$ constant in time after θ

2. Let $Z_t^G = Z_t \mathbb{1}_{\{\tau > t\}} + Z_t(\tau) \mathbb{1}_{\{\tau \leq t\}}$ a positive $(\mathcal{G}, \mathbb{P}_0)$-martingale with expectation 1

3. Define $d\mathbb{P} = Z_T^G d\mathbb{P}_0$ on \mathcal{G}_T. The RN density of \mathbb{P} w.r.t. \mathbb{P}_0 on \mathcal{F}_t is $Z_t^F = Z_t S_t + \int_0^t Z_s(\alpha_s^0(s))ds$.

4. Then the **density process of τ under \mathbb{P}** is

 $$\alpha_t^P(\theta) = \alpha_0^0(\theta) \frac{Z_t(\theta)}{Z_t^F} \quad \text{for } \theta < t$$

 $$\alpha_t^P(\theta) = \mathbb{E}[Z_\theta(\theta)\alpha_\theta^0(\theta)|\mathcal{F}_t] \frac{Z_t^F}{Z_t^F} \quad \text{for } \theta \geq t.$$
A general construction of density process. II.

1. Start with \mathbb{P}_0 with τ independent of \mathcal{F}_∞ with density f

2. Let $q_\infty(u)$ a family of \mathcal{F}_∞-measurable r.v. such that
\[\int_0^\infty q_\infty(u)f(u)du = 1 \]

3. Define $d\mathbb{P} = q_\infty(\tau)d\mathbb{P}_0$ on \mathcal{G}_∞.

4. Then, setting $q_t(u) = \mathbb{E}_0(q_\infty(u)|\mathcal{F}_t)$, the RN density of \mathbb{P} w.r.t. \mathbb{P}_0 on \mathcal{F}_t is $Z^\mathbb{F}_t = \int_0^\infty q_t(u)f(u)du$ and the density process of τ under \mathbb{P} is
\[\alpha^\mathbb{P}_t(\theta) = q_t(\theta)f(\theta)(Z^\mathbb{F}_t)^{-1} \]
Two ordered default times

Two ordered default times
Notation

Two G-stopping times:

$$
\tau = \tau^{(1)} := \min(\tau_1, \tau_2) \quad \text{and} \quad \sigma = \tau^{(2)} := \max(\tau_1, \tau_2).
$$

Before-default and after-default analysis extended naturally to the ordered defaults

- **Filtrations:** $H^{(1)}$ for τ and $H^{(2)}$ for σ respectively. Let
 $$
 G^{(1)} = F \lor H^{(1)} \quad \text{and} \quad G^{(2)} = F \lor H^{(1)} \lor H^{(2)} = G^{(1)} \lor H^{(2)}.
 $$

- On the set $\{ t < \tau \}$, it suffices to apply directly the previous studies
- On the sets $\{ \tau \leq t < \sigma \}$ and $\{ \sigma \leq t \}$ a recursive procedure using $G^{(1)}$ as the reference filtration and $G^{(2)}$ as the global filtration
-conditional survival probability of σ

- The $\mathbb{G}^{(1)}$-conditional survival probability of σ is

$$S_{t}^{\sigma|\mathbb{G}^{(1)}}(\theta) = \mathbb{P}(\sigma > \theta | \mathbb{G}^{(1)}_{t})$$

$$= \mathbb{1}_{\{\tau > t\}} \frac{\mathbb{P}(\tau > t, \sigma > \theta | \mathcal{F}_{t})}{\mathbb{P}(\tau > t | \mathcal{F}_{t})} + \mathbb{1}_{\{\tau \leq t\}} \frac{\partial_s \mathbb{P}(\sigma > \theta, \tau > s | \mathcal{F}_{t})}{\partial s \mathbb{P}(\tau > s | \mathcal{F}_{t})} \bigg|_{s = \tau}$$

- We assume that there exists $\alpha_{\tau, \sigma}^{t}$ such that

$$\mathbb{P}(\tau > \theta_1, \sigma > \theta_2 | \mathcal{F}_{t}) = \int_{\theta_1}^{\infty} du_1 \int_{\theta_2}^{\infty} du_2 \alpha_{t, \sigma}^{\tau} (u_1, u_2)$$

- Note that $\alpha_{t, \sigma}^{\tau} (u_1, u_2) = 0$, $\forall u_1 \geq u_2$.

Two ordered default times
Computation of $\mathbb{G}^{(2)}$-conditional expectations

Explicit formulas on the three sets:

- on $\{t < \tau\}$,

$$
\mathbb{E}[\mathbb{1}_{\{\tau > t\}} Y_T(\tau, \sigma) \mid G_t] = \frac{\mathbb{E}\left[\int_t^\infty du_1 \int_{u_1}^\infty du_2 Y_T(u_1, u_2) \alpha_T^{\tau,\sigma}(u_1, u_2) \mid F_t \right]}{\int_t^\infty du_1 \int_{u_1}^\infty du_2 \alpha_t^{\tau,\sigma}(u_1, u_2)}
$$

- on $\{\tau \leq t < \sigma\}$,

$$
\mathbb{E}[\mathbb{1}_{\{\tau > t\}} Y_T(\tau, \sigma) \mid G_t] = \frac{\mathbb{E}\left[\int_t^\infty du_2 Y_T(u_1, u_2) \alpha_T^{\tau,\sigma}(u_1, u_2) \mid F_t \right]}{\int_t^\infty du_2 \alpha_t^{\tau,\sigma}(u_1, u_2)} \bigg|_{u_1=\tau}
$$

- on $\{\sigma \leq t\}$,

$$
\mathbb{E}[\mathbb{1}_{\{\tau > t\}} Y_T(\tau, \sigma) \mid G_t] = \frac{\mathbb{E}[Y_T(u_1, u_2) \alpha_T^{\tau,\sigma}(u_1, u_2) \mid F_t]}{\alpha_t^{\tau,\sigma}(u_1, u_2)} \bigg|_{u_1=\tau \atop u_2=\sigma}
$$
A standard example (Schönbucher-Schubert)

- Cox process model for τ_1 and τ_2:

$$\tau_i = \inf\{t : \Lambda^i_t \geq \Theta_i\}$$

C is the survival copula of Θ_1, Θ_2

- Marginal survival process $S^i_t = \mathbb{P}(\tau_i > t | \mathcal{F}_\infty) = e^{-\Lambda^i_t}$, immersion hypothesis satisfied for \mathbb{F} and \mathbb{G}^i.

- The joint survival probability is obtained from

$$\mathbb{P}(\tau_1 > \theta_1, \tau_2 > \theta_2 | \mathcal{F}_\infty) = C(S^1_{\theta_1}, S^2_{\theta_2}).$$

Therefore

$$S^{1,2}_t(\theta_1, \theta_2) = \mathbb{E}[C(S^1_{\theta_1}, S^2_{\theta_2}) | \mathcal{F}_t].$$
A copula diffusion example

• Joint survival probability

\[S_0(\theta_1, \theta_2) = \mathbb{P}(\tau_1 > \theta_1, \tau_2 > \theta_2) = \exp \left(- (\theta_1^2 + \theta_2^2)^{\frac{1}{2}} \right) \]

a survival c.d.f of two exponential r.v. with unit parameter linked by a Clayton copula.

• Diffuse the copula function as a martingale: \(\forall t, \theta_1, \theta_2 \geq 0 \), let

\[S_t(\theta_1, \theta_2) = \exp \left(- \left(\theta_1^2 M_t^1 + \theta_2^2 M_t^2 \right)^{\frac{1}{2}} - A_t \right) \]

where

\[A_t = \frac{1}{8} \int_0^t \frac{1 + X_s^{\frac{1}{2}}}{X_s^{\frac{3}{2}}} d\langle X \rangle_s \quad \text{and} \quad X_s = \theta_1^2 M_s^1 + \theta_2^2 M_s^2 \]

where \(M^1, M^2 \) positive \(\mathbb{F} \)-martingales s.t. \(\langle M^1, M^2 \rangle_t > 0 \).
Exponential diffusion model

• A two-dimensional exponential example:

\[
\exp \left(-\theta_1 M^1_t - \theta_2 M^2_t - \frac{1}{2} \theta_1^2 \langle M^1 \rangle_t - \frac{1}{2} \theta_2^2 \langle M^2 \rangle_t - \theta_1 \theta_2 \left(\langle M^1, M^2 \rangle_t + a \right) \right)
\]

\(M^1, M^2 \) positive \(\mathbb{F} \) martingales s.t. \(\langle M^1, M^2 \rangle_t \geq 0 \)

• At \(t = 0 \), \(S_0(\theta_1, \theta_2) = \exp(-\theta_1 M^1_0 - \theta_2 M^2_0 - a \theta_1 \theta_2) \).

• Dependence at \(t > 0 \) characterized by \(\langle M^1, M^2 \rangle_t \)

• Probability condition

\[
M^1_t M^2_t - \langle M^1, M^2 \rangle_t > a > 0
\]
Several Defaults, Applications to pricing

• Generalization to n successive defaults $\sigma_1 \leq \cdots \leq \sigma_n$ by a recursive method

• Representation of conditional expectation with respect to $G_t^{(1, \cdots, n)} = F_t \lor H_{t1} \lor \cdots \lor H_{tn}$

Let $Y_t(u_1, \cdots, u_n)$ be a family of r.v. $F_t \otimes B(\mathbb{R}^n)$-measurable where $t, u_1, \cdots, u_n \geq 0$. Then

$$\mathbb{E}[Y_T(\sigma_1, \cdots, \sigma_n) | G_t^{(1, \cdots, n)}] = \sum_{i=0}^{n} \mathbb{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}} q_t^i(T, \sigma_1, \cdots, \sigma_i, Y_T)$$

where $q_t^i(T, s_1, \cdots, s_i, Y_T)$ is a ratio of F_t conditional expectations, $\sigma_0 = 0$ and $\sigma_{n+1} = \infty$.
Several Defaults, Applications to pricing

Pricing of the portfolio credit derivatives

- \(k^{th} \)-to-default swap depends on the \(k^{th} \) default time of the underlying portfolio:

\[
\mathbb{E}\left[\mathbb{1}_{\{\sigma_k > T\}} Y_T | \mathcal{G}_t^{(1,\ldots,n)} \right] = \sum_{i=0}^{k-1} \mathbb{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}} q_{t,Q}^i(T, \sigma_1, \ldots, \sigma_i, Y_T, S_T^{(k)})
\]

where \(S_T^{(k)} = \mathbb{P}(\sigma_k > T | \mathcal{F}_t) \).

- For a CDO tranche, total loss \(l_T = \sum_{i=1}^{n} \mathbb{1}_{\{\tau_i \leq t\}} \) and key term to calculate:

\[
\mathbb{E}\left[(K - l_T)^+ | \mathcal{G}_t^{(1,\ldots,n)} \right] = \int_{-\infty}^{K} du \mathbb{E}\left[\mathbb{1}_{\{\sigma_{\lfloor u \rfloor + 1} > T\}} | \mathcal{G}_t^{(1,\ldots,n)} \right]
\]

\[
= \int_{-\infty}^{K} du \sum_{i=0}^{\lfloor u \rfloor} \mathbb{1}_{\{\sigma_i \leq t < \sigma_{i+1}\}} q_{t,Q}^i\left(T, \sigma_1, \ldots, \sigma_i, S_T^{\lfloor u \rfloor}\right).
\]
Dynamics of CDSs prices

Let $X(\kappa)$ be the price of a CDS written on the default τ_1, with recovery δ and premium κ and $X_t(\kappa) = \mathbb{1}_{t \leq \tau_2 \wedge \tau_1} \tilde{X}_t(\kappa) + \mathbb{1}_{\tau_2 < t \leq \tau_1} \hat{X}_t(\kappa)$ its price. Let

$$S_t(u, v) = \mathbb{P}(\tau_1 > u, \tau_2 > v | F_t) = S_0(u, v) + \int_0^t g_s(u, v) dW_s$$

Then:

$$d\tilde{X}_t(\kappa) = \frac{1}{S_t(t, t)} \left[\left(\delta(t) \partial_1 S_t(t, t) + \kappa S_t(t, t) - (\partial_1 S_t(t, t) + \partial_2 S_t(t, t)) \tilde{X}_t(\kappa) \right) dt
ight.$$

$$- \left(\int_t^T (\delta(u) \alpha_t(u, t) + \kappa \partial_2 S_t(u, t)) du \right) dt + \sigma_t(T) d\hat{W}_t \left. \right]$$

with

$$\sigma_t(T) = -\frac{1}{S_t(t, t)} \left(\int_t^T (\delta(u) \partial_1 g_t(u, t) + \kappa_1 g_t(u, t)) du + g_t(t, t) \tilde{X}_t(\kappa) \right).$$
\[d\hat{X}_t(\kappa) = \left(-\delta(t)\lambda^{1\mid 2}(t, \tau_2) + \kappa + \hat{X}_t(\kappa)\lambda^{1\mid 2}(t, \tau_2) \right) dt + \sigma^{1\mid 2}_t(T) d\hat{W}_t \]

where

\[
\lambda^{1\mid 2}(t, s) = -\frac{\alpha_t(t, s)}{\partial_2 S_t(t, s)} \\
\sigma^{1\mid 2}_t(T) = \frac{1}{\partial_2 S_t(t, \tau_2)} (A_t(\tau_2) - \hat{X}_t(\kappa)\partial_2 g_t(t, \tau_2)), \\
A_t(s) = -\int_t^T \delta(u)\partial_{12} g_t(u, s) du - \kappa \int_t^T \partial_2 g_t(u, s) du.
\]
Perspectives

A general framework for portfolio of defaultable names:

- explicit model studies for the joint density process
- application to the pricing
- calibration of parameters
- dynamic hedging