Self-Exciting Corporate Defaults: Contagion or Frailty?

Kay Giesecke
CreditLab
Stanford University
giesecke@stanford.edu
www.stanford.edu/~giesecke

Joint work with Shahriar Azizpour, Credit Suisse
Defaults cluster
Sources of clustering

• Firms’ exposure to observable factors: **doubly-stochastic models**
 – Defaults are conditionally independent

• Firms’ exposure to unobservable factors: **frailty models**
 – Bayesian updating of frailty distribution at events

• Firms’s exposure to default events: **contagion models**
 – Failure of a firm tends to weaken the others
 – Complex web of contractual relationships in the economy
Feedback from events

GMAC 7.75 01/19/2010 - CDS Bond Px LEH

Source: LehmanLive.com

Delphi Chapter 11
Contagion or frailty?

- Both generate similar statistical effects in conditional default rates
 - Jumps at events

- Yet they have distinct economic foundations
 - Contagion: contractual linkages among firms
 - Frailty: asymmetric information

- This paper:
 - Develop, estimate and test a model of correlated event timing that incorporates contagion and frailty
 - Understand the relative empirical importance for U.S. corporate defaults of these phenomena
Preview of empirical results

- A default is estimated to have a significant influence on the conditional default rates of surviving firms
 - Rejection of doubly-stochastic hypothesis

- Contagion and frailty are roughly equally important sources for the feedback from events

- Can “explain” the dramatic time-variation of U.S. corporate default rates during 1970–2006
Default data: 1374 events on 909 dates
Events per default date
Self-exciting model of event timing

- \((Ω, \mathcal{F}, P)\) a complete probability space and \(\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}\) a complete information filtration satisfying the usual conditions

- Events arrive at ordered stopping times \(T_n\) that generate a non-explosive counting process \(N\) with \(\mathbb{F}\)-intensity \(\lambda\)

 \[N - \int_0^\cdot \lambda_s ds \text{ is an } \mathbb{F}\text{-local martingale} \]

- \(\lambda\) evolves through time according to the self-exciting model

 \[d\lambda_t = \kappa(c - \lambda_t)dt + \sigma \sqrt{\lambda_t} dW_t + \delta dL_t \]

where \(W\) is an \(\mathbb{F}\)-standard Brownian motion and

\[L = \sum_{n=0}^N \ell(D_n) \]

where \(\ell\) is a positive and bounded weight function and \(D_n \in \mathcal{F}_{T_n}\) is the number of defaults at \(T_n\)
Sample path of \((\lambda, L)\)
Default correlation channels

1. Impact of an event on the surviving firms through δL

2. Exposure to a Feller diffusion risk factor W

3. Uncertainty about the current value of W
 - This occurs when W is not adapted to the observation filtration $\mathcal{G} = (\mathcal{G}_t)_{t \geq 0}$, which may be much coarser than \mathcal{F}
 - In this case W is a frailty whose values must be filtered from the information in \mathcal{G}
Filtered intensity

- The econometrician’s filtered intensity h of N is a \mathcal{G}-adapted process h such that $N. - \int_0^t h_s ds$ is a \mathcal{G}-local martingale.

- It is given by the optional projection of the complete information intensity λ onto \mathcal{G}, assuming \mathcal{G} is fine enough to distinguish N.
 - $h_t = E[\lambda_t | \mathcal{G}_t]$, almost surely.

- The filtered intensity h is revised at events.
 - Contagious impact of the event (inherited from λ).
 - Bayesian updating of the \mathcal{G}-conditional distribution of W.
Filtered likelihood

- G is generated by the (T_n, D_n) and a covariate process X
- The parameter vector to be estimated is (θ, γ, ν), where $\theta = (\kappa, c, \sigma, \delta, \lambda_0, w)$ represents the intensity parameters
- For the sample period $[0, \tau]$, the likelihood function is
 \[f_\tau(N_\tau, T; \theta \mid D, X) \cdot g(D; \gamma) \cdot p_\tau(X; \nu) \]
 - $f_\tau(\cdot, \cdot; \theta \mid D, X)$ is the conditional “density” of N_τ and $T = (T_1, \ldots, T_{N_\tau})$ given $D = (D_1, \ldots, D_{N_\tau})$ and the covariate path over $[0, \tau]$
 - $g(\cdot; \gamma)$ is the probability function of D
 - $p_\tau(\cdot; \nu)$ is the density of the covariate path over $[0, \tau]$
- The three terms can be maximized separately to give the full likelihood estimates
Filtered likelihood

- To evaluate the density \(f_\tau(N_\tau, T; \theta \mid D, X) \), we transform the point process \((L, \mathbb{F})\) into a standard \(\mathbb{F}\)-compound Poisson process by an equivalent change of measure.

- With the standard abuse of notation,

\[
f_\tau(N_\tau, T; \theta \mid D, X) = \hat{E}[Z_\tau^{-1} e^{-\tau} \mid N_\tau, T, D, X]
\]

where \(\hat{E}\) denotes expectation with respect to the measure \(\hat{P}\) on \(\mathcal{F}_\tau\) defined by the density \(Z_\tau\), where

\[
Z_t = \exp \left(- \int_0^t \log(\lambda_s) dN_s - \int_0^t (1 - \lambda_s) ds \right)
\]

- \(Z_\tau\) is a function of \((T_n, D_n)_{n=1,\ldots,N_\tau}\) and \(\{W_t : 0 \leq t \leq \tau\}\)
 - If \(W\) can be identified from \(X\) or \(\sigma = 0\), then

\[
f_\tau(N_\tau, T; \theta \mid D, X) = Z_\tau^{-1} e^{-\tau}
\]
Filtered likelihood

• If W is a frailty that cannot be identified from X, then the conditional expectation is a nontrivial filter

• Since W is a (\hat{P}, \mathcal{F})-standard Brownian motion that is \hat{P}-independent of L, we can show that

$$
\hat{E} \left[Z_\tau^{-1} e^{-\tau} \mid N_\tau, T, D, X \right]
$$

$$
= \hat{E} \left[\prod_{k=1}^{N_\tau} \lambda_{T_k} - \phi_{T_{k-1}, T_k} (\lambda_{T_{k-1}}, \lambda_{T_k}) \phi_{T_n, \tau} (\lambda_{T_n}, \lambda_\tau) \mid N_\tau, T, D \right]
$$

• Here, for constants $0 \leq a \leq b \leq \tau$ and positive v and w,

$$
\phi_{a,b} (v, w) = \hat{E} \left[\exp \left(- \int_a^b \lambda_s ds \right) \mid \lambda_a = v, \lambda_b = w \right]
$$

which can be expressed explicitly (Broadie & Kaya (2006)) since λ follows an \mathcal{F}-Feller diffusion between events
Goodness-of-fit tests via time change

• We wish to assess the goodness-of-fit of a specification (N, λ, G)

• Meyer’s (1971) theorem implies that the G-counting process (N, h) can be transformed into a standard Poisson process by a change of time that is given by the G-compensator $A = \int_0^t h_s ds$

• If λ and G are correctly specified, then the (AT_n) form a standard Poisson process in the time-changed filtration generated by (A_t^{-1})

• We test the Poisson property using two tests
 – Kolmogorov-Smirnov test
 – Prahl’s (1999) test

• The tests are applied in-sample and out-of-sample
Goodness-of-fit tests via time change
Zero-factor model: $\sigma = 0$

- λ is \mathbb{G}-adapted so $h = \lambda$ and likelihood is in closed form
- We solve $\sup_{\theta} \log f_{\tau}(N_\tau, T; \theta \mid D, X)$ by grid search over discretized parameter space
 - Quadratic weight function $\ell(n) = n + wn^2$ fits best
- MLEs: $\hat{\kappa} = 1.84$, $\hat{c} = \hat{\lambda}_0 = 5.48$, $\hat{\delta} = 0.43$, $\hat{w} = 0.45$
- Observations
 - An event has a significant impact on fitted default rates
 - The fitted λ responds quickly to event bursts
 - The simple 4-parameter model captures the substantial time-series variation of default rates during 1970–2006
Zero-factor model: $\sigma = 0$

Fitted intensity λ vs. events per year
Zero-factor model: $\sigma = 0$

Empirical distribution of re-scaled inter-event times
Zero-factor model: $\sigma = 0$

QQ plot of the re-scaled inter-event times vs. standard exponential
Zero-factor model: $\sigma = 0$

1Y Forecast conditional portfolio loss distribution (out-of-sample)
Zero-factor model: $\sigma = 0$

1Y Forecast conditional portfolio loss distribution vs. actual events
Zero-factor model: $\sigma = 0$

Forecast portfolio value at risk (out-of-sample)
Zero-factor model: $\sigma = 0$

\mathcal{G}_τ-conditional portfolio loss surface (LGD uniform on $\{0.4, 0.6, 0.8, 1\}$)
One-factor model: $\sigma > 0$

- λ is not always \mathbb{G}-adapted
 - **Non-informative** covariate X:
 W is independent of X, and therefore not \mathbb{G}-adapted
 \rightarrow (1) Contagion, (2) Factor exposure to W, (3) Frailty
 - **Informative** covariate X:
 W is \mathbb{G}-adapted since it can be recovered from X
 \rightarrow (1) Contagion, (2) Factor exposure

- We treat these cases separately to understand the relative empirical importance of contagion and frailty
One-factor model with non-informative X

- λ is not \mathcal{G}-adapted and the likelihood must be filtered
- MLEs: $\hat{\kappa} = 1.0$, $\hat{c} = \hat{\lambda}_0 = 6.2$, $\hat{\sigma} = 3.5$, $\hat{\delta} = 0.2$, $\hat{w} = 0.5$
 - Compare with zero-factor model estimate $\hat{\delta} = 0.43$
- The filtered intensity

$$h_t = E[\lambda_t | \mathcal{G}_t] = \frac{\hat{E}[Z_t^{-1}\lambda_t | \mathcal{G}_t]}{\hat{E}[Z_t^{-1} | \mathcal{G}_t]}, \quad t \leq \tau$$

 - Jumps at T_n due to contagion and Bayesian updating of the \mathcal{G}-conditional distribution of W
 - Deterministic between events
One-factor model with non-informative X

Filtered intensity $h_t = E[\lambda_t \mid G_t]$ vs. zero-factor intensity
One-factor model with non-informative X

Smoothed intensity $H_t = E[\lambda_t | G_t]$ vs. zero-factor intensity
One-factor model with non-informative X

Empirical distribution of re-scaled inter-event times: fit deteriorated
One-factor model with informative X

- λ is \mathcal{G}-adapted so $h = \lambda$ (no frailty)
- We explore two covariates: S&P 500 index value, 1Y Treasury yield
 - Modeled as \mathcal{G}-Feller diffusions driven by W
 - Can recover W from X using covariate MLE
 - Treating the estimated W as though error-free, we then estimate λ as in the complete information case
- MLEs are similar to that of zero-factor model
- S&P 500 covariate performs slightly better than yield
One-factor model with informative X

Fitted intensity λ for two covariate choices
Discussion and conclusion

- An event is estimated to have a significant impact on fitted U.S. default rates, in all model variants
 - Implications for modeling of correlated default risk
- We found that contagion and frailty are roughly equally important sources for this impact
- Feedback through contagion or frailty is necessary to fit the dramatic time variation of U.S. default rates during 1970–2006, in-sample and out-of-sample
- Feedback “explains” the excess event clustering found by Das, Duffie, Kapadia and Saita (2007) for doubly-stochastic models
Discussion and conclusion

- The simple zero-factor model ($\sigma = 0$) is hard to beat
 - The one-factor model without frailty does about as well
 - Indicates the information content of event times

- Do we need frailty in our self-exciting intensity model λ?
 - Fit is worse, the estimation is challenging
 - No new statistical features relative to complete information
 - self-exciting model λ

- Re-interpret our self-exciting (λ, F) as filtered intensity in a frailty model in a super-filtration $\mathcal{H} \supseteq F$
 - F then takes the role of the observation filtration
 - Feedback jumps of λ can be interpreted in terms of contagion,
 or Bayesian updating of the frailty distributions
References

Prahl, Jürgen (1999), A fast unbinned test of event clustering in