ORF 307: Lecture 5

Linear Programming: Chapter 4
Efficiency

Robert Vanderbei

February 20, 2018

Slides last edited on February 21, 2018
ORFE ENTERTAINMENT NIGHT

THURSDAY, MARCH 1ST, 7:30 PM, SHERRERD HALL

All of ORFE is invited for a night of entertainment in Sherrerd Hall.
MC for the evening, "The Full" Kornhauser!
Sign up to "take the stage", contact tzigler@Princeton.edu.
Question:

Given a problem of a certain size, how long will it take to solve it?

Two Kinds of Answers:

• **Average Case.** How long for a *typical* problem.

• **Worst Case.** How long for the *hardest* problem.

Average Case.

• Mathematically difficult (define average!).

• Empirical studies.

Worst Case.

• Mathematically tractible (sometimes).

• Limited value.
Measures

Measures of Size

- Number of constraints \(m \) and/or number of variables \(n \).
- Number of data elements, \(mn \).
- Number of nonzero data elements.
- Size, in bytes, of AMPL formulation (model+data).

For the Markowitz model, \(m = 6,269 \), \(n = 2,097 \), but the number of nonzero data elements is just \(12 \times 2,085 = 25,020 \) which is much less than \(m \times n = 13,146,093 \).

Smart solvers like AMPL can make the problem even smaller using something they call a “preprocessor”. It looks for redundant constraints. For the Markowitz problem, the solver sees an \(A \) matrix with just 47,649 nonzeros which is much closer to the number of nonzero data elements than it is to \(m \times n \).

Measuring Time

Two factors:
- Number of iterations.
- Time per iteration.
Klee–Minty Problem (1972)

maximize \[\sum_{j=1}^{n} 2^{n-j} x_j \]

subject to \[2 \sum_{j=1}^{i-1} 2^{i-j} x_j + x_i \leq 100^{i-1} \quad i = 1, 2, \ldots, n \]
\[x_j \geq 0 \quad j = 1, 2, \ldots, n. \]

Example \(n = 3 \):

maximize \[4x_1 + 2x_2 + x_3 \]
subj. to \[x_1 \leq 1 \]
\[4x_1 + x_2 \leq 100 \]
\[8x_1 + 4x_2 + x_3 \leq 10000 \]
\[x_1, x_2, x_3 \geq 0. \]
A Distorted Cube

Case $n = 3$:

Constraints represent a “minor” distortion to an n-dimensional hypercube:

\[
\begin{align*}
0 & \leq x_1 \leq 1 \\
0 & \leq x_2 \leq 100 \\
& \vdots \\
0 & \leq x_n \leq 100^{n-1}.
\end{align*}
\]
Replace

1, 100, 10000, . . . ,

with

1 = b_1 \ll b_2 \ll b_3 \ll

Then, make following replacements to rhs:

\[
\begin{align*}
 b_1 & \rightarrow b_1 \\
 b_2 & \rightarrow 2b_1 + b_2 \\
 b_3 & \rightarrow 4b_1 + 2b_2 + b_3 \\
 b_4 & \rightarrow 8b_1 + 4b_2 + 2b_3 + b_4 \\
 & \vdots
\end{align*}
\]

Hardly a change!

Make a similar constant adjustment to objective function.

Look at the pivot tool version...
Case \(n = 3 \):

\[
\begin{align*}
\zeta &= -2 \ b_1 + -1 \ b_2 + 0 \ b_3 + 4 \ x_1 + 2 \ x_2 + 1 \ x_3 \\
w_1 &= 1 \ b_1 + 0 \ b_2 + 0 \ b_3 - 1 \ x_1 - 0 \ x_2 - 0 \ x_3 \\
w_2 &= 2 \ b_1 + 1 \ b_2 + 0 \ b_3 - 4 \ x_1 - 1 \ x_2 - 0 \ x_3 \\
w_3 &= 4 \ b_1 + 2 \ b_2 + 1 \ b_3 - 8 \ x_1 - 4 \ x_2 - 1 \ x_3
\end{align*}
\]

Now, watch the pivots...
Klee–Minty problem shows that:

Largest-coefficient rule can take $2^n - 1$ pivots to solve a problem in n variables and constraints.

For $n = 70$,

$$2^n = 1.2 \times 10^{21}.$$

At 1000 iterations per second, this problem will take 40 billion years to solve. The age of the universe is estimated to be 13.7 billion years.

Yet, problems with 10,000 to 100,000 variables/constraints are solved routinely every day.

Worst case analysis is just that: worst case.
Complexity

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>125</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>216</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>343</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>729</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1000</td>
<td>1024</td>
</tr>
<tr>
<td>12</td>
<td>144</td>
<td>1728</td>
<td>4096</td>
</tr>
<tr>
<td>14</td>
<td>196</td>
<td>2744</td>
<td>16384</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>4096</td>
<td>65536</td>
</tr>
<tr>
<td>18</td>
<td>324</td>
<td>5832</td>
<td>262144</td>
</tr>
<tr>
<td>20</td>
<td>400</td>
<td>8000</td>
<td>1048576</td>
</tr>
<tr>
<td>22</td>
<td>484</td>
<td>10648</td>
<td>4194304</td>
</tr>
<tr>
<td>24</td>
<td>576</td>
<td>13824</td>
<td>16777216</td>
</tr>
<tr>
<td>26</td>
<td>676</td>
<td>17576</td>
<td>67108864</td>
</tr>
<tr>
<td>28</td>
<td>784</td>
<td>21952</td>
<td>268435456</td>
</tr>
<tr>
<td>30</td>
<td>900</td>
<td>27000</td>
<td>1073741824</td>
</tr>
</tbody>
</table>

- **Sorting**: fast algorithm = $n \log n$, slow algorithm = n^2.
- **Matrix times vector**: n^2.
- **Matrix times matrix**: n^3.
- **Matrix inversion**: n^3.
- **Simplex Method**:
 - Worst case: $n^2 2^n$ operations.
 - Average case: n^3 operations.
 - Open question: Does there exist a variant of the simplex method whose worst case performance is polynomial?

- **Linear Programming**:
 - **Theorem**: There exists an algorithm whose worst case performance is $n^{3.5}$ operations.
Define a random problem:

\[
m = \text{int}\left(\text{ceil}\left(10\times\exp\left(\log\left(\text{maxsize}/10\right)\times\text{random.rand()}\right)\right)\right)
\]
\[
n = \text{int}\left(\text{ceil}\left(10\times\exp\left(\log\left(\text{maxsize}/10\right)\times\text{random.rand()}\right)\right)\right)
\]
\[
A = \text{around}\left(\sigma\times\text{random.randn}(m,n),0\right)
\]
\[
b = \text{array}\left(\text{around}\left(\sigma\times\text{abs}\left(\text{random.randn}(m,1)\right),0\right)\right)
\]
\[
c = \text{array}\left(\text{around}\left(\sigma\times\text{random.randn}(n,1),0\right)\right)
\]
\[
A = -A
\]

Initialize a few things:

\[
\text{nonbasics} = \text{arange}(n)
\]
\[
\text{basics} = n + \text{arange}(m)
\]
\[
\text{iter} = 0
\]
\[
\text{opt} = 0
\]
The Main Loop:

```python
while ( (max(c) > eps) ):
    col = argmax(c)
    Acol = A[:,col].reshape(m,1)
    tmp = -Acol/(b+eps)
    row = argmax(tmp)
    if ( sum( Acol<-eps ) == 0 ):
        opt = -1
        break
    j = nonbasics[col]
    i = basics[row]

    Arow = A[row,:]
    a = A[row,col]

    iter = iter+1
    A = A - Acol*Arow/a
    A[row,:] = -Arow/a
    A[:,col] = Acol.reshape(1,m)/a
    A[row,col] = 1/a

    # update the right-hand side
    brow = b[row,0]
    b = b - brow*Acol/a
    b[row] = -brow/a

    # update the objective function
    ccol = c[col,0]
    c = c - ccol*(Arow.reshape(n,1))/a
    c[col] = ccol/a

    # swap variables $x_j$ and $x_i$ in the dictionary
    basics[row] = j
    nonbasics[col] = i
```

The code for a pivot:

```python
A = A - Acol*Arow/a
A[row,:] = -Arow/a
A[:,col] = Acol.reshape(1,m)/a
A[row,col] = 1/a

# update the right-hand side
brow = b[row,0]
b = b - brow*Acol/a
b[row] = -brow/a

# update the objective function
ccol = c[col,0]
c = c - ccol*(Arow.reshape(n,1))/a
c[col] = ccol/a

# swap variables $x_j$ and $x_i$ in the dictionary
basics[row] = j
nonbasics[col] = i
```
Empirical Performance of the Simplex Method

+ Problems with an optimal solution
× Problems that are unbounded

number of pivots

min(m,n)
Empirical Performance of the Simplex Method

- Problems with an optimal solution
- Problems that are unbounded
$\text{iters} = 0.122 \min(m, n)^{1.77}$

$\text{iters} = 0.153 \min(m, n)^{1.43}$
Declare parameters:

```AMPL
param eps := 1e-9;
param sigma := 30;
param niters := 1000;
param size := 400;

param m;
param n;
param AA {1..size, 1..size};
param bb {1..size};
param cc {1..size};
param A {1..size, 1..size};
param b {1..size};
param c {1..size};
param x {1..size};
param z {1..size};
param w {1..size};

param iter;
param opt;
param stop;
param mniters {1..niters, 1..3};
param maxc;
param minbovera;
param col;
param row;
```

Define a random problem:

```AMPL
let m := ceil(exp(log(size)*Uniform01()));
let n := ceil(exp(log(size)*Uniform01()));
let {i in 1..m, j in 1..n} A[i,j] := round(sigma*Normal01());
let {i in 1..m} b[i] := round(sigma*abs(Normal01()));
let {j in 1..n} c[j] := round(sigma*Normal01());
let {i in 1..m, j in 1..n} A[i,j] := -A[i,j];
let {i in 1..m, j in 1..n} AA[i,j] := A[i,j];
let {i in 1..m} bb[i] := b[i];
let {j in 1..n} cc[j] := c[j];
```
repeat while (max {j in 1..n} c[j]) > eps {
 let maxc := 0;
 for {j in 1..n} {
 if (c[j] > maxc) then {
 let maxc := c[j];
 let col := j;
 }
 }
 let minbovera := 1/eps;
 for {i in 1..m} {
 if (A[i,col] < -eps) then {
 if (-b[i]/A[i,col] < minbovera) then {
 let minbovera := -b[i]/A[i,col];
 let row := i;
 }
 }
 }
 if minbovera >= 1/eps then {
 let opt := -1; # unbounded
 display "unbounded";
 break;
 }
 .
 .
 .
}

let {j in 1..n} Arow[j] := A[row,j];
let {i in 1..m} Acol[i] := A[i,col];
let a := A[row,col];
let {i in 1..m, j in 1..n}
let {j in 1..n} A[row,j] := -Arow[j]/a;
let {i in 1..m} A[i,col] := Acol[i]/a;
let A[row,col] := 1/a;
let brow := b[row];
let {i in 1..m}
 b[i] := b[i] - brow*Acol[i]/a;
let b[row] := -brow/a;

let ccol := c[col];
let {j in 1..n}
 c[j] := c[j] - ccol*Arow[j]/a;
let c[col] := ccol/a;
The Python notebook can be found here:

http://www.princeton.edu/~rvdb/307/python/PrimalSimplexComplexity.ipynb

The AMPL code can be found here:

http://orfe.princeton.edu/~rvdb/307/lectures/primalsimplex.txt