Transportation Problem

Each node is one of two types:
 • source (supply) node
 • destination (demand) node

Every arc has:
 • its tail at a supply node
 • its head at a demand node

Such a graph is called *bipartite*.

Notoriously *not planar*.
Transportation problem in which

- Equal number of supply and demand nodes.
- Every supply node has a supply of one.
- Every demand node has a demand for one.
- Each supply node is connected to every demand node (called a complete bipartite graph).
- Solution is required to be all integers.

Notes:

- These problems are very common.
- They are notoriously degenerate ($2n$ constraints but only n nonzero flows).
Shortest Paths Problem

Given:

- Network: \((N, A)\)
- Costs = Travel Times: \(c_{ij}, (i, j) \in A\)
- Home (root): \(r \in N\)

Problem: Find shortest path from every node in \(N\) to root.
Network Flow Formulations

First Thought...

- Put \(b_i = \begin{cases} 1 & i = \text{starting point} \\ -1 & i = \text{destination} \end{cases} \)
- Solve min-cost network flow problem.
- Shortest path from source to destination: follow tree arcs.
- Highly degenerate. Most tree arcs have zero flow.

A Better Method

- Put \(b_i = \begin{cases} 1 & i \neq r \\ -(m - 1) & i = r \end{cases} \)
- Shortest path from \(i \) to \(r \): follow tree arcs.
- Length (of time) of shortest path = \(y_r^* - y_i^* \).

Notation Used in Following Algorithms

- Put \(v_i = \text{minimum time from } i \text{ to } r \)
 - Called \textit{label} in networks literature.
 - Called \textit{value} in dynamic programming literature.
Label Correcting Algorithm = Dynamic Prog.

- Bellman’s Equation = Principle of Dynamic Programming

\[
\begin{align*}
 v_r &= 0 \\
 v_i &= \min\{c_{ij} + v_j : (i, j) \in A\} \\
 T &= \{(i, j) \in A : v_i = c_{ij} + v_j\} \quad \text{– not necessarily a tree}
\end{align*}
\]

- Method of Successive Approximation

 - Let \(k \) denote an iteration counter.
 - Fix root node’s value to zero for all iterations: \(v_r^{(k)} = 0 \) for all \(k \).
 - For all other nodes...
 * Initialize: \(v_i^{(0)} = \infty \).
 * Iterate: \(v_i^{(k+1)} = \min\{c_{ij} + v_j^{(k)} : (i, j) \in A\} \quad i \neq r \).
 * Stop: when a pass leaves \(v_i \)'s unchanged.

- Complexity

 - \(v_i^{(k)} \) = length of shortest path having \(k \) or fewer arcs.
 - Requires at most \(m - 1 \) passes.
 - \(n \) adds/compares per pass.
 - \(mn \) operations in total.
Notations:

- $F = \text{set of finished nodes (labels are set)}$.
- $h_i, \ i \in \mathcal{N} = \text{next node to visit after } i$ (heading).

Dijkstra’s Algorithm:

- Initialize:

$$F = \emptyset, \quad v_j = \begin{cases} 0 & j = r \\ \infty & j \neq r \end{cases}$$

- Iterate:

 - While unfinished nodes remain, select the one with smallest v_k. Call it j. Add it to set of finished nodes F.
 - For each unfinished node i having an arc connecting it to j:
 * If $c_{ij} + v_j < v_i$, then set
 $$v_i = c_{ij} + v_j$$
 $$h_i = j$$
• Each iteration finishes one node: \(m \) iterations

• Work per iteration:
 – Selecting an unfinished node:
 * Naively, \(m \) comparisons.
 * Using appropriate data structures, a heap, \(\log m \) comparisons.
 – Update adjacent arcs.

• Overall: \(m \log m + n \).