Lecture 20
Shortest Paths: The Last Lab
Decimal vs. Fraction

(C) Princeton University
Shortest Paths Problem

Given:
- Network: (,)
- Costs = Travel times: \(c_{ij}, (i, j) \) \(A \)
- Home (root): \(r \) \(N \)

Problem: Find shortest path from every node in \(N \) to root.
Dijkstra’s Algorithm

Notation:
• Put $v_i = \text{min time from } i \text{ to } r$
 - Called label in networks literature.
 - Called value in dynamic programming literature.
• $F = \text{set of finished nodes (labels are set)}$.
• h_i, i ? $N = \text{next node to visit after } i$ (heading).

Dijkstra’s Algorithm:
• Initialize:

 F ?

 v_i ?

 j ? r

• Iterate:
 - Select unfinished node with smallest v_k. Call it j.
 - Add j to set of finished nodes F.
 - For each unfinished node i having an arc connecting it to j:
 - If $c_{ij} + v_j < v_i$, then set
 $$v_i = c_{ij} + v_j$$
 $$h_i = j$$
 • Stop: when no unfinished nodes remain
Dijkstra’s Algorithm - Complexity

- Each iteration finishes one node: \(m \) iterations
- Work per iteration:
 - Selecting an unfinished node:
 - Naively, \(m \) comparisons.
 - Using appropriate data structures, a heap, \(\log m \) comparisons.
 - Update adjacent arcs
- Overall: \(m \log m + n \)
Fractions

Two choices:

Create a \textit{Fraction} class consisting of two integers, \texttt{num} and \texttt{den}, and write all code using \textit{Fraction} instead of double.

Write all code using \texttt{double} to represent numbers. Convert from/to fraction format on input/output.

\textbf{Fraction} \hspace{2cm} \textbf{Advantages:} \hspace{2cm} \textbf{double}

- Seems safer - one implements exactly what one expects: greatest common denominator, reduction to simplest form, etc.
- Simple to program.
- Very little danger of overflow.
- Easy to switch between decimal and fraction format.

\textbf{Disadvantages:}

- Integer overflow during temporary computation is a danger.
- Code is hard to read:
 e.g. \texttt{z = x.add(y)} to add \textit{Fraction} \texttt{x} and \texttt{y} and store in \texttt{z}.
- Could make small mistakes.
Converting Reals to Fractions

Two methods:
- **Brute Force**: Start with $\text{den} = 1$ and try each possible den until the associated num is an integer (with a small tolerance). This works but is terribly inefficient.
- **Continued Fractions**: Represent a real number x by its continued fraction expansion:

\[
x \equiv \frac{1}{b_1 \equiv \frac{1}{b_2 \equiv \frac{1}{b_3 \equiv \cdots}}}
\]

Truncate after a finite number of terms. This method is amazingly efficient.

Computing the b_j’s:
- Put $t_0 = x$
- Put $b_j = \text{greatest_integer}(t_j)$
- Put $t_{j+1} = 1/(t_j - b_j)$.
- Repeat.
Rationalizing Continued Fractions

How many terms? Unlike series expansions, you can’t just evaluate a continued fraction from left to right stopping when the change gets small.

The obvious way to compute starts with a blind guess of how many terms to use, then starts at the right and works back up to the left.

But there is a beautiful way to compute from left to right.

Let:

\[
\begin{align*}
\frac{A_j}{B_j} & \quad b_0 \quad \frac{1}{b_1} \quad \frac{1}{b_2} \quad \ldots \quad \frac{1}{b_j} \\
A_0 & = 1 \\
B_0 & = 1
\end{align*}
\]

Compute each ratio successively:

Proof by induction:
First check \(j = 1 \):

\[
\begin{align*}
\frac{A_1}{B_1} & \quad b_0 \quad \frac{1}{b_1} \quad \frac{1}{b_2} \quad \ldots \quad \frac{1}{b_j} \\
A_1 & = 1 \\
B_1 & = b_0
\end{align*}
\]

Now assume true for all \(1, 2, \ldots, j - 1 \) and check it for \(j \)
Method contFrac in class Format

```java
static public String contFrac(int width, int precision, double t) {
    int bj=0, Aj=0, Aj1, Aj2, Bj=1, Bj1, Bj2, num, den;
    boolean pos;
    double tj, maxDen = Math.pow(10, precision);
    String numstr0, numstr;
    if (t >= 0) { pos = true; tj = t; }
    else        { pos = false; tj = -t; }
    bj = (int) (tj+1.0e-12);
    tj = 1/(tj-bj);
    Aj = bj; Aj1 = 1;
    Bj = 1; Bj1 = 0;
    num = Aj;
    den = Bj;
    if (!pos) {num = -num;}
    numstr0 = "";
    numstr = fracString(num, den, width, precision);
    while (Math.abs(t - Aj/(double)Bj) > 1.0e-12
        && numstr.length() < width && Bj < maxDen ) {
        Aj2 = Aj1; Aj1 = Aj;
        Bj2 = Bj1; Bj1 = Bj;
        bj = (int) (tj+1.0e-12);
        tj = 1/(tj-bj);
        Aj = bj*Aj1 + Aj2;
        Bj = bj*Bj1 + Bj2;
        num = Aj;
        den = Bj;
        if (!pos) {num = -num;}
        numstr0 = numstr;
        numstr = fracString(num, den, width, precision);
    }
    return numstr0;
}
```
A Test Program

```java
/***********************************************************
* Program to compute rational approximations to PI
 ***********************************************************/
import myutil.*;

public class ContFrac
{
    public static void main(String[] args)
    {
        double x = Math.PI;

        /***
        * using static formatting methods
        ***/

        System.out.println();
        System.out.println("Using static formatting methods");

        System.out.println();
        System.out.println("pi = "+Format.floating(10,5,x));
        for (int j=0; j<10; j++) {
            System.out.println("pi = "+Format.contFrac(2*j+1,j,x));
        }
    }
}
```