A selective overview of nonparametric methods in financial econometrics

Jianqing Fan
Benheim Center of Finance and
Department of Operation Research and Financial Engineering
Princeton University
Princeton, NJ 08544 *

March 8, 2005

Abstract

This paper gives a brief overview on the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inferences of instantaneous returns and volatility functions of time-homogeneous and time-dependent diffusion processes, and estimation of transition densities and state price densities. We first briefly describe the problems and then outline main techniques and main results. Some useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our presentation and applications.

Key Words and Phrases: Asset pricing, diffusion, drift, GLR tests, simulations, state price density, time-inhomogeneous model, transition density, volatility.

1 Introduction

Technological invention and trade globalization have brought into a new era of financial markets. Over the last three decades, enormous number of new financial products have been introduced to meet customers’ demands. An important milestone is that in the year 1973, the world’s first options exchange opened in Chicago. At the same year, Black and Scholes (1973) published their famous paper on option pricing and Merton (1973) launched general equilibrium model for security pricing, two important landmarks for modern asset pricing. Since then, the derivative markets have

*Fan was partially supported by NSF grant DMS-0355179 and a direct allocation RGC grant of the Chinese University of Hong Kong. He acknowledges gratefully various discussions with Professors Yacine Aït-Sahalia and Jia-an Yan and helpful comments of the editors and reviewers that lead to improve significantly the presentation of the paper.
experienced extraordinary growth. Professionals in finance now routinely use sophisticated statistical techniques and modern computation power in portfolio management, securities regulation, proprietary trading, financial consulting and risk management.

Financial econometrics is an active field of integration of finance, economics, probability, statistics, and applied mathematics. This is exemplified in the books by Campbell et al. (1997), Gouriéroux and Jasiak (2001), and Cochrane (2001). Financial activities generate many new problems, economics provides useful theoretical foundation and guidance, and quantitative methods such as statistics, probability and applied mathematics are essential tools to solve the quantitative problems in finance. To name a few, complex financial products pose new challenges on their valuation and risk management. Sophisticated stochastic models have been introduced to capture the salient features of underlying economic variables and to price derivatives of securities. Statistical tools are used to identify parameters of stochastic models, to simulate complex financial systems and to test economic theories via empirical financial data.

An important area of financial econometrics is to study the expected returns and volatilities of the price dynamics of stocks and bonds. Returns and volatilities are directly related to asset pricing, proprietary trading, security regulation and portfolio management. To achieve these objectives, the stochastic dynamics of underlying state variables should be correctly specified. For example, option pricing theory allows one to value stock or index options and hedge against the risks of option writers, once a model for the dynamics of underlying state variables is given. See, for example, the books on mathematical finance by Bingham and Kiesel (1998), Steele (2000), and Duffie (2001). Yet, many of stochastic models in use are simple and convenient ones to facilitate mathematical derivations and statistical inferences. They are not derived from any economics theory and hence can not be expected to fit all financial data. Thus, while the pricing theory gives spectacularly beautiful formulas when the underlying dynamics is correctly specified, it offers little guidance in choosing or validating a model. There is always a danger that misspecification of a model leads to erroneous valuation and hedging strategies. Hence, there are genuine needs for flexible stochastic modeling. Nonparametric methods offer a unified and elegant treatment for such a purpose.

Nonparametric approaches have recently been introduced to estimate return, volatility, transition densities and state price densities of stock prices and bond yields (interest rates). They are also useful for examining the extent to which the dynamics of stock prices and bond yields vary over time. They have immediate applications to the valuation of bond price and stock options and management of market risks. They can also be employed to test economic theory such as the capital asset pricing model and stochastic discount model (Campbell et al.1997) and answer the questions such as if the geometric Brownian motion fits certain stock indices, whether the Cox-Ingsoll-Ross model fits yields of bonds, and if interest rates dynamics evolve with time. Furthermore, based on empirical data, one can also fit directly the observed option prices with their associated characteristics such as strike price, the time to maturity, risk-free interest rate, dividend yield and see if the option prices are consistent with the theoretical ones. Needless to say, nonparametric tech-
niques will play an increasingly important role in financial econometrics, thanks to the availability of modern computing power and the development of financial econometrics.

The paper is organized as follows. We first introduce in section 2 some useful stochastic models for modeling stock prices and bond yields and then briefly outline some probabilistic aspects of the models. In section 3, we review nonparametric techniques used for estimating the drift and diffusion functions, based on either discretely or continuously observed data. In section 4, we outline techniques for estimating state price densities and transition densities. Their applications in asset pricing and testing for parametric diffusion models are also introduced. Section 5 makes some concluding remarks.

2 Stochastic diffusion models

Much of financial econometrics concerns with asset pricing, portfolio choice and risk management. Stochastic diffusion models have been widely used for describing the dynamics of underlying economic variables and asset prices. They form the basis of many spectacularly beautiful formulas for pricing contingent claims. For an introduction to financial derivatives, see Hull (2003).

2.1 One-factor diffusion models

Let \(S_{t\Delta} \) denote the stock price observed at time \(t\Delta \). The time unit can be hourly, daily, weekly, among others. Presented in Figure 1(a) is the daily log-returns, defined as

\[
\log(S_{t\Delta}) - \log(S_{(t-1)\Delta}) \approx (S_{t\Delta} - S_{(t-1)\Delta})/S_{(t-1)\Delta}
\]

of the Standard and Poor 500 index, which is a value-weighted index based on the prices of the 500 stocks that account for approximately 70% of the total U.S. equity (stock) market capitalization. The styled features of the returns include that the volatility tends to cluster and that the (marginal) mean and variance of the returns tend to be constant. One simplified model to capture the second feature is that

\[
\log(S_{t\Delta}) - \log(S_{(t-1)\Delta}) \approx \mu_0 + \sigma_0 \varepsilon_t,
\]

where \(\{\varepsilon_t\} \) is a sequence of independent normal random variables. This is basically a random walk hypothesis, regarding the stock price movement as an independent random walk. When the sampling time unit \(\Delta \) gets small, the above random walk can be regarded as a random sample from the continuous-time process:

\[
d\log(S_t) = \mu_0 + \sigma_1 dW_t, \tag{1}
\]

where \(\{W_t\} \) is a standard one-dimensional Brownian motion and \(\sigma_1 = \sigma_0/\sqrt{\Delta} \). The process (1) is called geometric Brownian motion, as \(S_t \) is an exponent of Brownian motion \(W_t \). It was used by Osborne (1959) to model stock price dynamic and by Black and Scholes (1973) to derive their celebrated option price formula.
Interest rates are fundamental to financial markets, consumer spending, corporate earnings, asset pricing, inflation and economy. The bond market is even bigger than the equity market. Presented in Figure 1(c) is the interest rates \(\{r_t\} \) of the two-year US Treasury notes at weekly frequency. As the interest rates get higher, so do the volatilities. To appreciate this, Figure 1(d) plot the pairs \(\{(r_{t-1}, r_t - r_{t-1})\} \). Its dynamic is very different from the equity market. The interest rates should be non-negative. They possess heteroscedasticity in addition to the mean-revision property: As the interest rates rise above the mean level \(\alpha \), there is a negative drift that pulls the rates down, while when the interest rates fall below \(\alpha \), there is a positive force that drives the rates up. To capture these two main features, Cox \textit{et al.}(1985) derived the following model for interest rate dynamic:

\[
dr_t = \kappa(\alpha - r_t)dt + \sigma r_t^{1/2}dW_t.
\] (2)

For simplicity, we will refer it to as the CIR model. It is an amelioration of the Vasicek (1977) model

\[
dr_t = \kappa(\alpha - r_t)dt + \sigma dW_t,
\] (3)

which ignores the heteroscedasticity and is also referred to as the Ornstein-Uhlenback process. While this is an unrealistic model for interest rates, the process is Gaussian with explicit transition density. It fact, the time series sampled from (3) follows the autoregressive model of order 1:

\[
Y_t = (1 - \rho)\alpha + \rho Y_{t-1} + \varepsilon_t,
\] (4)
where $Y_t = r_t \Delta, \varepsilon \sim N(0, \sigma^2(1-\rho^2)/(2\kappa))$ and $\rho = \exp(-\kappa \Delta)$. Hence, the process is well understood and usually serves as a testing case for proposed statistical methods.

There are many stochastic models that have been introduced to model the dynamics of stocks and bonds. Let X_t be an observed economic variable at time t. This can be the prices of a stock or a stock index, or the yields of a bond. A simple and frequently used stochastic model is

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t. \quad (5)$$

The function $\mu(\cdot)$ is frequently called a drift or instantaneous return function and $\sigma(\cdot)$ is referred to as a diffusion or volatility function, since

$$\mu(X_t) = \lim_{\Delta \to 0} \Delta^{-1}E(X_{t+\Delta} - X_t|X_t), \quad \sigma^2(X_t) = \lim_{\Delta \to 0} \Delta^{-1}\text{var}(X_{t+\Delta}|X_t).$$

The time-homogeneous model (5) contains many famous one-factor models in financial econometrics. In an effort to improve the flexibility of modeling interest dynamics, Chan et al. (1992) extends the CIR model (2) to

$$dX_t = \kappa(\alpha - X_t)dt + \sigma X_t^\gamma dW_t. \quad (6)$$

Aït-Sahalia (1996b) introduces a nonlinear mean reversion: while interest rates remain in the middle part of their domain, there is little mean reversion and at the end of the domain, a strong nonlinear mean reversion emerges. He imposes the nonlinear drift of form $(\alpha_0 + \alpha_1 + \alpha_2 X_t + \alpha_2 X_t^2)$. See also Ahn and Gao (1999), which models the interest rates by $Y_t = X_t^{-1}$, in which the X_t follows the CIR model.

Economic conditions vary over time. Thus, it is reasonable to expect that the instantaneous return and volatility depend on both time and price level for a given state variable, such as stock prices and bond yields. This leads to a further generalization of model (5) to allow the coefficients to depend on time t:

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t. \quad (7)$$

Since only a trajectory of the process is observed [see Figure 1(c)], there is no sufficient information to estimate the bivariate functions in (7) without further restrictions [To consistently estimate the bivariate volatility function $\sigma(x, t)$, we need to have data that eventually fill up a neighborhood of the point (t, x)]. A useful specification of model (7) is

$$dX_t = \{\alpha_0(t) + \alpha_1(t)X_t\} dt + \beta_0(t)X_t^\beta(t) dW_t. \quad (8)$$

This is an extension of the CKLS model (6) by allowing the coefficients to depend on time and was introduced and studied by Fan et al. (2003). Model (8) includes many commonly-used time-varying models for the yields of bonds, introduced by Ho and Lee (1986), Hull and White (1990), Black, Derman and Toy (1990), Black and Karasinski (1991), among others. The experience in Fan et al. (2003) and other studies of the varying coefficient models (Chen and Tsay 1993, Hastie and
Tibshirani, 1993, Cai et al.2000, Hong and Lee 2003) shows that coefficient functions in (8) can not be estimated reliably due to the collinearity effect in local estimation: localizing in the time domain, the process \(\{X_t\} \) is nearly constant and hence \(\alpha_0(t) \) and \(\alpha_1(t) \) and \(\beta_0(t) \) and \(\beta_1(t) \) can not easily be differentiated. This leads Fan et al.(2003) to introduce the semiparametric model:

\[
 dX_t = \{\alpha_0(t) + \alpha_1(t)X_t\} \ dt + \beta_0(t)X_t^\beta dW_t
\]

(9)

to avoid the collinearity.

2.2 Some probabilistic aspects

A question arises naturally when there exists a solution to the stochastic differential equation (SDE) (7). Such a program was first carried out by Itô(1942, 1946). For SDE (7), there are two different meanings of solutions: strong solution and weak solution. See sections 5.2 and 5.3 of Karatzas and Shreve (1991). Basically, for a given initial condition \(\xi \), a strong solution requires that \(X_t \) is determined completely by the information up to time \(t \). Under the Lipchitz and linear growth conditions on the drift and diffusion functions, for every \(\xi \) that is independent of \(\{W_s\} \), there exists a strong solution of equation (7). Such a solution is unique. See Theorem 2.9 of Karatzas and Shreve (1991).

For one-dimensional time-homogeneous diffusion process (5), weaker conditions can be obtained for the so-called weak solution. By an application of the Itô’s formula to an appropriate transform of the process, one can make the transformed process to have a zero drift. Thus, we can consider without loss of generality that the drift in (5) is zero. For such a model, Engelbert and Schmidt (1984) give a necessary and sufficient condition of the existence of the solution. The continuity of \(\sigma \) suffices for the existence of the weak solution. See Theorem 5.5.4 (page 333) of Karatzas and Shreve (1991) and Theorem 23.1 of Kallenberg (2001).

We will use several times the Itô formula. For process \(X_t \) in (7), for a sufficiently regular function \(f \) (Karatzas and Shreve, 1991, p.153),

\[
 df(X_t, t) = \left\{ \frac{\partial f(X_t, t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(X_t, t)}{\partial x^2} \sigma^2(X_t, t) \right\} dt + \frac{\partial f(X_t, t)}{\partial x} dX_t. \tag{10}
\]

The formula can be understood as the second order Taylor expansion of \(f(X_{t+\Delta}, t+\Delta) - f(X_t, t) \) by noticing that \((X_{t+\Delta} - X_t)^2 \) is approximately \(\sigma^2(X_t, t)\Delta \).

The Markovian property plays an important role in statistical inference. According to Theorem 5.4.20 of Karatzas and Shreve (1991), the solution \(X_t \) to equation (5) is Markovian, provided that the coefficient functions \(\mu \) and \(\sigma \) are bounded on compact subsets. Let \(p_{\Delta}(y|x) \) be the transition density, the conditional density of \(X_{t+\Delta} = y \) given \(X_t = x \). The transition density must satisfy the forward and backward Kolmogorov equations (page 282, Karatzas and Shreve 1991).

Under the linear growth and Lipchitz’s conditions, and additional conditions on the boundary behavior of functions \(\mu \) and \(\sigma \), the solution to equation (1) is positive and ergodic. The invariant
density is given by

\[f(x) = 2C_0\sigma^{-2}(x) \exp(-2 \int_{-\infty}^{x} \mu(y)\sigma^{-2}(y)dy), \quad (11) \]

where \(C_0 \) is a normalizing constant and the lower limit of the integral does not matter. If the initial distribution is taken from the invariant density, then the process \(\{X_t\} \) is stationary with the marginal density \(f \) and transition density \(p_\Delta \).

Stationarity plays an important role in time series analysis and forecasting (Fan and Yao, 2003). The structural invariability allows us to forecast the future based on the historical data. For example, the structural relation (e.g. the conditional distribution, conditional moments) between \(X_t \) and \(X_{t+\Delta} \) remains the same over the time \(t \). This makes us possible to use historical data to estimate the invariant quantities. Associated with the stationarity is the concept of mixing, which says that the data that are far apart in time are nearly independent. We now describe the conditions under which the solution to SDE (1) are geometrically mixing.

Let \(H_t \) be the operator defined by

\[(H_tg)(x) = E(g(X_t)|X_0 = x), \quad x \in \mathbb{R}, \quad (12) \]

where \(f \) is a Borel measurable bounded function on \(\mathbb{R} \). A stationary process \(X_t \) is said to satisfy the condition \(G_2(s, \alpha) \) of Rosenblatt (1970) if there exists an \(s \) such that

\[\|H_s\|_2^2 = \sup_{\{f:Ef(X)=0\}} \frac{E(H_sf)^2(X)}{Ef^2(X)} \leq \alpha^2 < 1, \]

namely the operator is contractive. As a consequence of the semigroup \((H_{s+t} = H_sH_t) \) and contraction properties, the condition \(G_2 \) implies (Banon, 1977) that for any \(t \in [0, \infty) \), \(\|H_t\|_2 \leq \alpha^{t/s-1} \).

The latter implies, by the Cauchy-Schwartz inequality, that

\[\rho(t) = \sup_{g_1, g_2} \text{corr}(g_1(X_0), g_2(X_t)) \leq \alpha^{t/s-1}, \quad (13) \]

That is, the \(\rho \)-mixing coefficient decays exponentially fast. Banon and Nguyen (1981) show further that for stationary Markov process, \(\rho(t) \to 0 \) is equivalent to (13), namely, \(\rho \)-mixing and geometric \(\rho \)-mixing are equivalent.

2.3 Valuation of contingent claims

An important application of SDE is the pricing of financial derivatives, such as options and bonds. It forms beautiful modern asset pricing theory and provides useful guidance in practice. Steele (2000), Duffie (2001) and Hull (2003) offer very nice introduction to the field.

The simplest financial derivative is the European call option. A call option is the right to buy an asset at a certain price \(K \) (strike price) before or at expiration time \(T \). A put option gives the right to sell an asset at a certain price \(K \) (strike price) before or at expiration. European options allow option holders to exercise only at maturity, while American options can be exercised at any time before expiration. Most stock options are American, while options on stock indices are European.
Figure 2: (a) Payoff of a call option. (b) Payoff of a put option. (c) Payoff of a portfolio of 4 options with different strike prices and different (long and short) positions

The payoff for a European call option is \((X_T - K)_+\), where \(X_T\) is the price of the stock at expiration \(T\). When the stock raises above the strike price \(K\), one can exercise the right and makes a profit of \(X_T - K\). However, when the stock falls below \(K\), one renders his right and makes no profit. Similarly, a European put option has payoff \((K - X_T)_+\). See Figure 2. By creating a portfolio with different maturity and different strike prices, one can obtain all kind of payoff functions. As an example, suppose that a portfolio of options consists of contracts of SP500 index matured in 6 months: one call-option with strike price $1,200, one put-option with strike price $1,050, and $40 cash, but short position (borrowing or −1 contract) on a call option with strike price $1,150 and a one put option with strike $1,100. Figure 2(c) shows the payoff function of such a portfolio of options at the expiration \(T\). Clearly, such an investor bets the S&P 500 index should be around $1,125 in 6 months and limits his risk exposure on the investment (losing at most $10 if his/her bet is wrong). Thus, the European call and put options are fundamental options as far as the payoff function at time \(T\) is concerned. There are many other exotic options such as Asian options, look-back options and barrier options, which have different payoff functions and the payoffs can be path dependent. See Chapter 18 of Hull (2003).

Suppose that the asset price follows the SDE (7) and there is a riskless investment alternative such as bond which earns compounding rate of interest \(r_t\). Suppose that the underlying asset pays no dividend. Let \(\beta_t\) be the value of the riskless bond at time \(t\). Then, with initial investment \(\beta_0\),

\[
\beta_t = \beta_0 \exp(\int_0^t r_s ds),
\]
	hanks{to the compounding of interests. Suppose that a probability measure \(Q\) is equivalent to the original probability measure \(P\), namely \(P(A) = 0\) if and only if \(Q(A) = 0\). The measure \(Q\) is called an equivalent martingale measure for deflated price processes of given securities if these processes are martingales with respect to \(Q\). An equivalent martingale measure is also referred to as a “risk-neutral” measure if the deflater is the bond price process. See Chapter 6 of Duffie (2001).}

When the markets are dynamically complete, the price of the European option with payoff
\(\Psi(X_T)\) with initial price \(X_0 = x_0\) is

\[
P_0 = \exp\left(-\int_0^T r_s ds\right) E^Q(\Psi(X_T)|X_0 = x_0),
\]

where \(Q\) is the equivalent martingale measure for the deflated price process \(X_t/\beta_t\). Namely, it is the discounted value of the expected payoff in the risk neutral world. The formula is derived by using the so-called relative pricing approach, which values the price of the option from given prices of a portfolio, consisting of the risk-free bond and the stock, with the identical payoff as the option at the expiration.

As an illustrative example, suppose that the price of a stock follows the geometric Brownian motion \(dX_t = \mu X_t dt + \sigma X_t dW_t\) and that the risk-free rate \(r\) is constant. Then, the deflated price process \(Y_t = \exp(-rt)X_t\) follows the SDE:

\[
dY_t = (\mu - r)Y_t dt + \sigma Y_t dW_t.
\]

The deflated price process is not a martingale as the drift is not zero. The risk-neutral measure is the one that makes the drift zero. To achieve this, we appeal to the Girsanov theorem, which changes the drift of a diffusion process without alternating the diffusion, via a change of probability measure. Under the “risk-neutral” probability measure \(Q\), the process \(Y_t\) satisfies \(dY_t = \sigma Y_t dW_t\), a martingale. Hence, the price process \(X_t = \exp(rt)Y_t\) under \(Q\) follows

\[
dX_t = rX_t dt + \sigma X_t dW_t.
\] (15)

Using exactly the same derivation, one can easily generalize the result to the price process (5). Under the risk-neutral measure, the price process (5) follows

\[
dX_t = rX_t dt + \sigma(X_t) dW_t.
\] (16)

The intuitive explanation of this is clear: all stocks under the “risk-neutral” world is expected to earn the same rate as the risk-free bond.

For the Geometric Brownian motion, by an application of the Itô formula (10) to (15), we have under the “risk-neutral” measure

\[
\log X_t - \log X_0 = (r - \sigma^2/2)t + \sigma^2 W_t.
\] (17)

Note that given the initial price \(X_0\), the price follows a log-normal distribution. Evaluation of the expectation of (14) for the European call option with payoff \(\Psi(X_T) = (X_T - K)_+\), one obtains the Black-Scholes (1973) option pricing formula:

\[
P_0 = x_0 \Phi(d_1) - K \exp(-rT) \Phi(d_2),
\]

where \(d_1 = \{\log(x_0/K) + (r + \sigma^2/2)T\} \{\sigma \sqrt{T}\}^{-1}\) and \(d_2 = d_1 - \sigma \sqrt{T}\).
2.4 Simulation of stochastic models

Simulation methods provide useful tools for the valuation of financial derivatives and other financial instruments, when analytic formula (14) is hard to obtain. For example, if the price under the “risk-neural” measure is (16), the analytic formula for pricing derivatives is usually not analytically trackable and simulation methods offer viable alternatives (together with variance reduction techniques) to evaluate it. They also provide useful tools for assessing performance of statistical methods and statistical inferences.

The simplest method is perhaps the Euler scheme. The SDE (7) is approximated as

\[X_{t+\Delta} = X_t + \mu(t, X_t)\Delta + \sigma(t, X_t)\Delta^{1/2} \varepsilon_t, \tag{19} \]

where \(\{\varepsilon_t\} \) is a sequence of independent random variables with the standard normal distribution. The time unit is usually a year. Thus, the monthly, weekly and daily data correspond, respectively, to \(\Delta = 1/12, 1/52 \) and \(1/252 \) (there are approximately 252 trading days per year). Given an initial value, one can recursively apply (19) to obtain a sequence of simulated data \(\{X_{j\Delta}, j = 1, 2, \cdots\} \).

The approximation error can be reduced if one uses a smaller step size \(\Delta/M \) for a given integer \(M \) to first obtain a more detailed sequence \(\{X_{j\Delta/M}, j = 1, 2, \cdots\} \) and then to take the subsequence \(\{X_{j\Delta}, j = 1, 2, \cdots\} \). For example, to simulate daily prices of a stock, one can simulate hourly data first and than takes the daily closing prices. Since the step size \(\Delta/M \) is smaller, the approximation (19) is more accurate. However, the computational cost is about a factor of \(M \) higher.

The Euler scheme has convergence rate \(\Delta^{1/2} \), which is called strong order 0.5 approximation by Kloeden et al. (1996). The higher order approximations can be obtained by the Itô-Taylor expansion (see Schurz, 2000, page 242). In particular, a strong order-one approximation is given by

\[X_{t+\Delta} = X_t + \mu(t, X_t)\Delta + \sigma(t, X_t)\Delta^{1/2} \varepsilon_t + \frac{1}{2} \sigma(t, X_t)\sigma_x'(t, X_t)\Delta\{\varepsilon_t^2 - 1\}, \tag{20} \]

where \(\sigma_x'(t, x) \) is the partial derivative function with respect to \(x \). This method can be combined with a smaller step size method in the last paragraph. For the time-homogeneous model (1), an alternative form, without evaluating the derivative function, is given in (3.14) of Kloeden et al. (1996).

The exact simulation method is available if one can simulate the data from the transition density. Given the current value \(X_t = x_0 \), one draws \(X_{t+\Delta} \) from the transition density \(p_\Delta(\cdot|x_0) \). The initial condition can either be fixed at a given value or be generated from the invariant density (11). In the latter case, the generated sequence is stationary.

There are only a few processes where exact simulation is possible. For GBM, one can generate the sequence from the explicit solution (17), where the Brownian motion can be simulated from independent Gaussian increments. The conditional density of Vasicek’s model (3) is Gaussian with mean \(\alpha + (x_0 - \alpha)\rho \) and variance \(\sigma^2_\Delta = \sigma^2(1 - \rho^2)/(2\kappa) \), as indicated by (4). Generate \(X_0 \) from the invariant density \(N(\alpha, \sigma^2/(2\kappa)) \). With \(X_0 \), generate \(X_\Delta \) from the normal distribution with mean
\alpha + (X_0 - \alpha) \exp(-\kappa \Delta) \text{ and variance } \sigma^2_\Delta. \text{ With } X_\Delta, \text{ we generate } X_{2\Delta} \text{ from } \alpha + (X_\Delta - \alpha) \exp(-\kappa \Delta) \text{ and variance } \sigma^2_\Delta. \text{ Repeat this process until we obtain the desired length of the process.}

For the CIR model (2), provided that \(q = 2\kappa \alpha / \sigma^2 - 1 \geq 0 \) (a sufficient condition for \(X_t \geq 0 \)), the transition density is determined by the fact that given \(X_t = x_0 \), \(2cX_{t+\Delta} \) has a noncentral \(\chi^2 \) distribution with degrees of freedom \(2q + 2 \) and non-centrality parameter \(2u \), where \(c = 2\kappa / \{ \sigma^2 (1 - \exp(-\kappa \Delta)) \} \), \(u = cx_0 \exp(k \Delta) \). The invariant density is the Gamma distribution with shape parameter \(q + 1 \) and the scale parameter \(\sigma^2 / (2\kappa) \).

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{fig3}
\caption{Simulated trajectories (multiplied by 100) using the Euler approximation and the strong order-one approximation for a CIR model. Top panel: solid-curve corresponds to the Euler approximation and the dashed curve is based on the order-one approximation. Bottom panel: The difference between the order-one scheme and the Euler scheme.}
\end{figure}

As an illustration, we consider the CIR model (7) with parameters \(\kappa = 0.21459 \), \(\alpha = 0.08571 \), \(\sigma = 0.07830 \) and \(\Delta = 1/12 \). The model parameters are taken from Chapman and Pearson (2000). We simulated 1000 monthly data using both the Euler scheme (19) and strong order-one approximation (20) with the same random shocks. Figure 3 depicts one of their trajectories. The difference is negligible. This is in line with the observations made by Stanton (1997) that as long as data are sampled monthly or more frequently, the errors introduced by using the Euler approximation is very small for stochastic dynamics that are similar to the CIR model.

11
3 Estimation of return and volatility functions

There are a large literature on the estimation of the return and volatility functions. Early references include Pham (1981) and Prakasa Rao (1985). Some studies are based on continuously observed data, while others are based on discretely observed data. For the latter, some regard \(\Delta \) tending to zero, while others regard \(\Delta \) fixed. We briefly introduce some of the ideas.

3.1 Methods of estimation

We first outline several methods of estimation for parametric models. The idea can be expanded into nonparametric models. Suppose that we have a sample \(\{X_i \Delta, i = 0, \ldots, n\} \) from model (5). Then, the likelihood function, under the stationary condition, is

\[
\log f(X_0) + \sum_{i=1}^{n} \log p_{\Delta}(X_i \Delta | X_{(i-1)\Delta}).
\]

(21)

If the functions \(\mu \) and \(\sigma \) are parameterized and the explicit form of the transition density is available, one can apply the maximum likelihood method. However, the explicit form of the transition density is not available for many simple models such as the CLKS model (6). Even for the CIR model (2), its maximum likelihood estimator is very difficult to find, as the transition density involves the modified Bessel function of the first kind.

One simple technique is to rely on the Euler approximation scheme (19). Then proceed as if the data come from the Gaussian location and scale model. This method works well when \(\Delta \) is small, but can create some biases when \(\Delta \) is large. However, the bias can be reduced by the following calibration idea, called the indirect inference by Gouriéroux et al. (1993). The idea works as follows.

Figure 4: The idea of the indirect inference. For each given true \(\theta \), one obtains an estimate using the Euler approximation and the simulated data. This gives a calibration curve as shown. Now for a given estimate \(\hat{\theta}_0 = 3 \) based on the Euler approximation and real data, one finds the calibrated estimate \(\hat{\theta}_1^{-1}(3) = 2.080 \).

One simple technique is to rely on the Euler approximation scheme (19). Then proceed as if the data come from the Gaussian location and scale model. This method works well when \(\Delta \) is small, but can create some biases when \(\Delta \) is large. However, the bias can be reduced by the following calibration idea, called the indirect inference by Gouriéroux et al. (1993). The idea works as follows.
Suppose that the functions μ and σ have been parameterized with unknown parameters θ. Use the Euler approximation (19) and the maximum likelihood method to obtain an estimate $\hat{\theta}_0$. For each given parameter θ around $\hat{\theta}_0$, simulate data from (5) and apply the crude method to obtain an estimate $\hat{\theta}_1(\theta)$, which depends on θ. Since we simulated the data with the true parameter θ, the function $\hat{\theta}_1(\theta)$ tells us how to calibrate the estimate. See Figure 4. Calibrate the estimate via $\hat{\theta}^{-1}_1(\hat{\theta}_0)$, which improves the bias of estimate. One drawback of this method is that it is intensive in computation and the calibration can not easily be done when the dimensionality of parameters θ is high.

Another method for bias reduction is to approximate the transition density in (21) by a higher order approximation, and to then maximize the approximated likelihood function. Such a scheme has been introduced by Aït-Sahalia (1999, 2002) who derives the expansion of the transition density around a normal density function using the Hermit polynomial. The intuition behind such an expansion is that the diffusion process $X_{t+\Delta} - X_t$ in (5) can be regarded as sum of many independent increments with a very small step size and hence the Edgeworth expansion can be obtained for the distribution of $X_{t+\Delta} - X_t$ given X_t.

An “exact” approach is to use the method of moment. If the process X_t is stationary as in the interest-rate models, the moment conditions can easily be derived by observing

$$E\left\{ \lim_{\Delta \to 0} \Delta^{-1} E[g(X_{t+\Delta}) - g(X_t) | X_t] \right\} = \lim_{\Delta \to 0} \Delta^{-1} E[g(X_{t+\Delta}) - g(X_t)] = 0$$

for any function g satisfying the regularity condition such that the limit and the expectation are exchangeable. The right-hand side is the expectation of $dg(X_t)$. By Itô’s formula (10), the above equation deduces to

$$E[g'(X_t)\mu(X_t) + g''(X_t)\sigma^2(X_t)/2] = 0.$$ \hspace{1cm} (22)

For example, if $g(x) = \exp(-ax)$ for some given $a > 0$, then

$$E \exp(-aX_t)\{\mu(X_t) - a\sigma^2(X_t)/2\} = 0.$$

This can produce arbitrary number of equations by choosing different a’s. If the functions μ and σ are parametrized, the number of moment conditions can be more than the number of equations. One way to efficiently use this is the generalized method of moment introduced by Hansen (1982), minimizing a quadratic form of the discrepancies between the empirical and the theoretical moments, a generalization of the classical method of moment which solves the moment equations. The weighting matrix in the quadratic form can be chosen to optimize the performance of the resulting estimator. To improve the efficiency of the estimate, a large system of moments is needed. Thus, the generalized method of moments needs a large system of nonlinear equations, which can be expensive in computation. Further, the moment equations (22) use only the marginal information of the process. Hence, it is not efficient. For example, in the CKLS model (6), σ and κ are estimable via (22) only through σ^2/κ.

13
3.2 Time-homogeneous model

The Euler approximation can easily be used to estimate the drift and diffusion nonparametrically. Let \(Y_{i\Delta} = \Delta^{-1}(X_{(i+1)\Delta} - X_{i\Delta}) \) and \(Z_{i\Delta} = \Delta^{-1}(X_{(i+1)\Delta} - X_{i\Delta})^2 \). Then,

\[
E(Y_{i\Delta}|X_{i\Delta}) = \mu(X_{i\Delta}) + O(\Delta), \quad \text{and} \quad E(Z_{i\Delta}|X_{i\Delta}) = \sigma^2(X_{i\Delta}) + O(\Delta).
\]

Thus, \(\mu(\cdot) \) and \(\sigma^2(\cdot) \) can be approximately regarded as the regression functions of \(Y_{i\Delta} \) and \(Z_{i\Delta} \) on \(X_{i\Delta} \), respectively. Stanton (1997) applies kernel regression (Wand and Jones, 1995; Simonoff, 1996) to estimate the return and volatility functions. Let \(K(\cdot) \) be a kernel function and \(h \) be a bandwidth. Stanton’s estimators are given by

\[
\hat{\mu}(x) = \frac{\sum_{i=0}^{n-1} Y_{i\Delta} K_h(X_{i\Delta} - x)}{\sum_{i=0}^{n-1} K_h(X_{i\Delta} - x)} \quad \text{and} \quad \hat{\sigma}^2(x) = \frac{\sum_{i=0}^{n-1} Z_{i\Delta} K_h(X_{i\Delta} - x)}{\sum_{i=0}^{n-1} K_h(X_{i\Delta} - x)},
\]

where \(K_h(u) = h^{-1}K(u/h) \) is a rescaled kernel. The consistency and asymptotic normality of the estimator are studied in Bandi and Phillips (2003). Fan and Yao (1998) apply the local linear technique (§6.3, Fan and Yao 2003) to estimate the return and volatility functions, under a slightly different setup. The local linear estimator (Fan, 1992) is given by

\[
\hat{\mu}(x) = \sum_{i=0}^{n-1} K_n(X_{i\Delta} - x, x) Y_{i\Delta},
\]

where

\[
K_n(u, x) = K_h(u) \frac{S_{n,2}(x) - u S_{n,1}(x)}{S_{n,2}(x) S_{n,0}(x) - S_{n,1}(x)^2}
\]

with \(S_{n,j}(x) = \sum_{i=0}^{n-1} K_h(X_{i\Delta} - x)(X_{i\Delta} - x)^j \) is the equivalent kernel induced by the local linear fit. In contrast with the kernel method, the local linear weights depend on both \(X_i \) and \(x \). In particular, they satisfy that

\[
\sum_{i=1}^{n-1} K_n(X_{i\Delta} - x, x) = 1, \quad \text{and} \quad \sum_{i=1}^{n-1} K_n(X_{i\Delta} - x, x)(X_{i\Delta} - x) = 0.
\]

These are the key properties for the bias reduction of the local linear method as demonstrated in Fan (1992). Further, Fan and Yao (1998) use the squared residuals

\[
\Delta^{-1}(X_{(i+1)\Delta} - X_{i\Delta} - \hat{\mu}(X_{i\Delta}) \Delta)^2
\]

rather than \(Z_{i\Delta} \) to estimate the volatility function. This would reduce further the approximation errors in the volatility estimation. They show further that the conditional variance function can be estimated as well as if the conditional mean function is known in advance.

Stanton (1997) derives higher order approximation scheme up to order 3 in an effort to reduce biases. He suggested that higher order approximations must outperform lower order approximations. To verify such a claim, Fan and Zhang (2003) derive the following order \(k \) approximation scheme:

\[
E(Y_{i\Delta}^*|X_{i\Delta}) = \mu(X_{i\Delta}) + O(\Delta^k), \quad \text{and} \quad E(Z_{i\Delta}^*|X_{i\Delta}) = \sigma^2(X_{i\Delta}) + O(\Delta^k),
\]

(25)
Table 1: Variance inflation factors by using higher order differences

<table>
<thead>
<tr>
<th>Order k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1(k)$</td>
<td>1.00</td>
<td>2.50</td>
<td>4.83</td>
<td>9.25</td>
<td>18.95</td>
</tr>
<tr>
<td>$V_2(k)$</td>
<td>1.00</td>
<td>3.00</td>
<td>8.00</td>
<td>21.66</td>
<td>61.50</td>
</tr>
</tbody>
</table>

where

$$Y^*_{i\Delta} = \Delta^{-1} \sum_{j=1}^{k} a_{k,j} \{X_{(i+j)\Delta} - X_{i\Delta}\}$$

and

$$Z^*_{i\Delta} = \Delta^{-1} \sum_{j=1}^{k} a_{k,j} \{X_{(i+j)\Delta} - X_{i\Delta}\}^2$$

and the coefficients $a_{k,j} = (-1)^{j+1}(k)/j$ are chosen to make the approximation error in (25) of order Δ^k. For example, the second approximation is

$$1.5(X_{t+\Delta} - X_t) - 0.5(X_{t+2\Delta} - X_{t+\Delta}).$$

By using the independent increment of the Brownian motion, its variance is $1.5^2 + 0.5^2 = 2.5$ times as large as that of the first order difference. Indeed, Fan and Zhang (2003) show that while higher order approximations give better approximation errors, we have to pay a huge premium for variance inflation:

$$\text{var}(Y^*_{i\Delta} | X_{i\Delta}) = \sigma^2(X_{i\Delta}) V_1(k) \Delta^{-1} \{1 + O(\Delta)\},$$

$$\text{var}(Z^*_{i\Delta} | X_{i\Delta}) = 2\sigma^4(X_{i\Delta}) V_2(k) \{1 + O(\Delta)\},$$

where the variance inflation factors $V_1(k)$ and $V_2(k)$ are explicitly given by Fan and Zhang (2003). Table 1 depicts some of the numerical results for the variance inflation factor.

The above theoretical results have also been verified via empirical simulations in Fan and Zhang (2003). The problem is no monopoly for nonparametric fitting — it is shared by the parametric methods. Therefore, the methods based on higher order differences should seldomly be used unless the sampling interval is very wide (e.g. quarterly data). It remains open whether it is possible to estimate nonparametrically the return and the volatility functions, without seriously inflating the variance, with other higher approximation schemes.

As an illustration, we take the yields of the two-year Treasury notes depicted in Figure 1. Figure 5 presents nonparametrically estimated volatility function based on orders $k = 1$ and $k = 2$ approximations. The local linear fit is employed with the Epanechnikov kernel and bandwidth $h = 0.35$. It is evident that the order 2 approximation has higher variance than the order 1 approximation. In fact, the magnitude of variance inflation is in line with the theoretical result: the increase of the standard deviation is $\sqrt{3}$ from order 1 to order 2 approximation.

Various discretization schemes and estimation methods have been proposed for the case with high frequency data over a long time horizon. More precisely, the studies are under the assumptions that $\Delta_n \to 0$ and $n\Delta_n \to \infty$. See for example, Dacunha-Castelle and Florens (1986), Yoshida
Figure 5: Nonparametric estimates of volatility based on orders 1 and 2 differences. The bars represent two standard deviations above and below the estimated volatility. Top panel: order 1 fit. Bottom panel: order 2 fit.

3.3 Model validation

Stanton (1997) applies his kernel estimator to a Treasury’s bill data set and observes nonlinear return function in his nonparametric estimate, particularly in the region where the interest rate
is high (over 14%, say). This leads him to postulate the hypothesis that the return functions of short-term rates are nonlinear. Chapman and Pearson (2000) study the finite sample properties of Stanton’s estimator. By applying his procedure to the CIR model, they find that the Stanton’s procedure produces spurious nonlinearity, due to the boundary effect and the mean reversion.

Can we employ a formal statistic test to the Stanton’s hypothesis? The null hypothesis can simply be formulated: the drift is of a linear form as in model (6). What is the alternative hypothesis? For such a kind of problem, our alternative model is usually vague. Hence, it is natural to assume that the drift is a nonlinear smooth function. This becomes a testing problem with a parametric null hypothesis versus a nonparametric alternative hypothesis. There is a large literature on this. The basic idea is to compute a discrepancy measure between the parametric estimates and nonparametric estimates and to reject the parametric hypothesis when the discrepancy is large. See for example the book by Hart (1997).

In an effort to derive a generally applicable principle, Fan et al. (2001) propose the generalized likelihood ratio (GLR) tests for parametric versus nonparametric or nonparametric versus nonparametric hypotheses. The basic idea is to replace the maximum likelihood under nonparametric hypotheses (usually does not exist) by the likelihood under good nonparametric estimates. Section 9.3 of Fan and Yao (2003) gives details on the implementation of the GLR tests, including estimating P-values, bias reduction, bandwidth selection. The method has been successfully employed by Fan and Zhang (2003) for checking whether the return and volatility functions possess certain parametric forms.

Another viable approach of model validation is to base on the transition density. One can check whether the nonparametrically estimated transition density is significantly different from the parametrically estimated one. Section 4.3 provides some additional details. Another approach, proposed by Hong and Li (2005), uses the fact that under the null hypothesis, the random variables \(\{Z_i\} \) are a sequence of i.i.d uniform random variables, where \(Z_i = P(X_i | X_{(i-1)} \Delta, \theta) \) and \(P(y|x, \theta) \) is the transition distribution function. They proposed to detect the departure from the null hypothesis by comparing the kernel-estimated bivariate density of \(\{(Z_i, Z_{i+1})\} \) with that of the uniform distribution on the unit square. The transition density based approaches appear more elegant as they check simultaneously the forms of drift and diffusion. However, the transition density does often not admit an analytic form and the tests can be intensive in computation.

3.4 Fixed sampling interval

For practical analysis of financial data, it is hard to determine whether the sampling interval tends to zero. The key determination is whether the approximation errors for small “\(\Delta \)” are negligible. It is ideal when a method is applicable whether or not “\(\Delta \)” is small. This kind of method is possible, as demonstrated below.

The simplest problem to illustrate the idea is the kernel density estimation of the invariant density of the stationary process \(\{X_t\} \). For the given sample \(\{X_{t\Delta}\} \), the kernel density estimate
for the invariant density is
\[\hat{f}(x) = n^{-1} \sum_{i=1}^{n} K_h(X_i \Delta - x), \] (26)

based on the discrete data \(\{X_i \Delta, i = 1, \ldots, n\} \). This method is valid for all \(\Delta \). It gives a consistent estimate of \(f \) as long as the time horizon is long: \(n\Delta \to \infty \). We will refer to this kind of nonparametric methods as the state-domain smoothing, as the procedure localizes in the state variable \(X_t \).

Various properties, including consistency and asymptotic normality, of the kernel estimator (26), are studied by Bandi (2002) and Bandi and Phillips (2003). Bandi (2002) also used the estimator (26), which is the same as the local time of the process spending at a point \(x \) except a scaling constant, as a descriptive tool for potentially nonstationary diffusion processes.

Why can the state-domain smoothing methods be employed as if the data were independent? This is due to the fact that localizing in state-domain weakens the correlation structure and that nonparametric estimates use essentially only local data. Hence many results on nonparametric estimators for independent data continue to hold for dependent data, as long as their mixing coefficients decay sufficiently fast. As mentioned at the end of §2.2, the geometric mixing and mixing are equivalent for time-homogeneous diffusion processes. Hence, the mixing coefficients decay usually sufficiently fast for theoretical investigation.

The localizing and whitening can be understood graphically in Figure 6. Figure 6(a) shows that there is very strong serial correlation of the yields of the two-year treasury notes. However, this correlation is significantly weakened for the local data in the neighborhood of 8% \(\pm 0.2\% \). In fact, as detailed in Figure 6(b), the indices of the data that fall in the local window are quite far apart. This in turn implies the week dependence for the data in the local window, i.e. “whitening by windowing”. See §5.4 of Fan and Yao (2003) and Hart (1996) for further details. The effect of dependence structure on the kernel density estimation was thoroughly studied by Claeskens and Hall (2002).

The diffusion function can also be consistently estimated when \(\Delta \) is fixed. In pricing the derivatives of interest rates, Aït-Sahalia (1996a) assumes \(\mu(x) = k(\alpha - x) \). Using the kernel density estimator \(\hat{f} \) and estimated \(\kappa \) and \(\alpha \) from a least-squares method, he applied (11) to estimate \(\sigma(\cdot) \):
\[\hat{\sigma}^2(x) = 2 \int_0^x \hat{\mu}(u) \hat{f}(u) \, du / \hat{f}(x). \]
He further established the asymptotic normality of such an estimator. Gao and King (2004) propose tests of diffusion models based on the discrepancy between the parametric and nonparametric estimates of the invariant density.

The Aït-Sahalia (1996a) method is a simple one to illustrate that the volatility function can be consistently estimated for fixed \(\Delta \). However, we do not expect that it is efficient. Indeed, we use only the marginal information of the data. As shown in (21), almost all information is contained in the transition density \(p_\Delta(\cdot|\cdot) \). The transition density can be estimated as in §4.2 below, no matter \(\Delta \) is small or large. Since the transition density and drift and volatility are one-to-one correspondence for the diffusion process (5), the drift and diffusion functions can be consistently estimated via inverting the relationship between the transition density and the drift and diffusion.
functions.

There is no simple formula for expressing the drift and diffusion in terms of the transition density. The inversion is frequently carried out via a spectral analysis of the operator $H_\Delta = \exp(\Delta L)$, where the infinitesimal operator L is defined as

$$Lg(x) = \frac{\sigma^2(x)}{2} g''(x) + \mu(x) g'(x).$$

It has the property:

$$Lg(x) = \lim_{\Delta \to 0} \Delta^{-1} \{E[g(X_{t+\Delta})|X_t = x] - g(x)\},$$

by Itô’s formula (10). The operator H_Δ is the transition operator in that [see also (12)]

$$H_\Delta g(x) = E\{g(X_\Delta)|X_0 = x\}.$$

The works of Hansen and Scheinkman (1995), Hansen et al. (1998) and Kessler and Sørensen (1999) consist of the following idea. The first step is to estimate the transition operator H_Δ from the
data. From the transition operator, one can identify the infinitesimal operator L and hence the functions $\mu(\cdot)$ and $\sigma(\cdot)$. More precisely, let λ_1 be the largest negative eigenvalue of the operator L with eigen function $\xi_1(x)$. Then, $L\xi_1 = \lambda_1 \xi_1$, or equivalently $\sigma^2 \xi_1'' + 2\mu \xi_1' = 2\lambda_1 \xi_1$. This gives one equation of μ and σ. Another equation can be obtained via (11): $(\sigma^2 f)' - 2\mu f = 0$. Solving these two equations we obtain

$$\sigma^2(x) = 2\lambda_1 \int_0^x \xi_1(y) f(y) dy / [f(x) \xi_1(x)].$$

and another explicit expression for $\mu(x)$. Using the semigroup theory (Theorem IV.3.7, Engel and Nagel 2000), ξ_1 is also an eigen function of H_Δ with eigenvalue $\exp(\Delta \lambda_1)$. Hence, the proposal is to estimate the invariant density f and the transition density $p_\Delta(y|x)$, which implies the value of λ_1 and ξ_1. Gobel et al. (2002) derive the optimal rate of convergence for such a scheme, using a wavelet basis. In particular, they show that for fixed Δ, the optimal rates of convergence for μ and σ are of orders $O(n^{-s/(2s+5)})$ and $O(n^{-s/(2s+3)})$, respectively, where s is the degree of smoothness of μ and σ.

3.5 Time-dependent model

The time dependent model (8) was introduced to accommodate the possibility of economic changes over time. The coefficient functions in (8) are assumed to be slow time-varying and smooth. Nonparametric techniques can be applied to estimate these coefficient functions. The basic idea is to localizing in time, resulting in a time-domain smoothing.

We first estimate the coefficient functions $\alpha_0(t)$ and $\alpha_1(t)$. For each given time t_0, approximate the coefficient functions locally by constants: $\alpha(t) \approx a$ and $\beta(t) = b$ for t in a neighborhood of t_0. Using the Euler approximation (19), we run a local regression: Minimize

$$\sum_{i=0}^{n-1} (Y_{i\Delta} - a - bX_{i\Delta})^2 K_h(i\Delta - t_0)$$

with respect to a and b. This results in an estimate $\hat{\alpha}_0(t_0) = \hat{a}$ and $\hat{\alpha}_1(t_0) = \hat{b}$, where \hat{a} and \hat{b} are the minimizer of the local regression (27). Fan et al. (2003) suggest using a one-sided kernel such as $K(u) = (1-u^2)I(-1 < u < 0)$ so that only the historical data in the time interval (t_0-h, t_0) are used in the above local regression. This facilitates forecasting and bandwidth selection. Our experience shows that there are no significant differences between nonparametric fitting with one-sided and two-sided kernels. We opt for local constant approximations instead of local linear approximations in (27), since the local linear fit can create artificial albeit insignificant linear trends when the underlying functions $\alpha_0(t)$ and $\alpha_1(t)$ are indeed time-independent. To appreciate this, for constant functions α_1 and α_2, a large bandwidth will be chosen to reduce the variance in the estimation. This is in essence to fit a global linear regression (27). If the local linear approximations are used, since no variable selection procedures have been incorporated in the local fitting (27), the slopes of the local linear approximations will not be estimated as zero and hence artificial linear trends will be created for the estimated coefficients.
The coefficient functions in the volatility can be estimated by the local approximated likelihood method. Let
\[\hat{E}_t = \Delta^{-1/2} \{ X_{t+\Delta} - X_t - (\hat{\alpha}_0(t) + \hat{\alpha}_1(t) X_t) \Delta \} \]
be the normalized residuals. Then,
\[\hat{E}_t \approx \beta_0(t) X_t^{\beta_1(t)} \varepsilon_t. \] (28)
The conditional log-likelihood of \(\hat{E}_t \) given \(X_t \) can easily be obtained by the approximation (28).
Using local constant approximations and incorporating the kernel weight, we obtain the local approximated likelihood at each time point and an estimate of the functions \(\beta_0(\cdot) \) and \(\beta_1(\cdot) \) at that time point. This type of the local approximated-likelihood method is related to the generalized method of moments of Hansen (1982), and the ideas of Florens-Zmirou (1993) and Genon-Catalot and Jacod (1993).

Since the coefficient functions in both return and volatility functions are estimated using only historical data, their bandwidths can be selected based on a form of the average prediction error. See Fan et al. (2003) for details. The local least-squares regression can also be applied to estimate the coefficient functions \(\beta_0(t) \) and \(\beta_1(t) \) via the transformed model [see (28)]
\[\log(\hat{E}_t^2) \approx 2 \log \beta_0(t) + \beta_1(t) \log(X_t^2) + \log(\varepsilon_t^2), \]
but we do not pursue along this direction, since the local least-squares estimate is known to be inefficient in the likelihood context and the exponentiation of an estimated coefficient function of \(\log \beta_0(t) \) is unstable.

A question arises naturally if the coefficients in model (8) are really time-varying. This amounts for example to testing \(H_0 : \beta_0(t) = \beta_0 \) and \(\beta_1(t) = \beta_1 \). Based on the GLR technique, Fan et al. (2003) proposed a formal test for this kind of problems.

The coefficient functions in the semiparametric model (9) can also be estimated by using the profile approximated-likelihood method. For each given \(\beta_1 \), one can estimate easily \(\beta_0(\cdot) \) via the approximation (28), resulting in an estimate \(\hat{\beta}_0(\cdot; \beta_1) \). Regarding the nonparametric function \(\beta_0(\cdot) \) as being parameterized by \(\hat{\beta}_0(\cdot; \beta_1) \), model (28) with \(\beta_1(t) \equiv \hat{\beta}_1 \) becomes a “synthesized” parametric model with unknown \(\beta_1 \). The parameter \(\beta_1 \) can be estimated by the maximum (approximated) likelihood method. Note that \(\beta_1 \) is estimated by using all the data points, while \(\hat{\beta}_0(t) = \hat{\beta}_0(t; \hat{\beta}_1) \) is obtained by using only the local data points. See Fan et al. (2003) for details.

For other nonparametric methods of estimating volatility in time inhomogeneous models, see Härdle et al. (2002) and Mercurio and Spokoiny (2004). Their methods are based on model (8) with \(\alpha_1(t) = \beta_1(t) = 0 \).

3.6 State-domain versus Time-domain smoothing

So far, we have introduced both state- and time-domain smoothing. The former relies on the structural invariability implied by the stationarity assumption and uses pre-dominantly on the
(remote) historical data. The latter uses the continuity of underlying parameters and concentrates basically on the recent data. This can be illustrated in Figure 7, using the yields of the 3-month Treasury bills from January 8, 1954 to July 16, 2004, sampled at weekly frequency. On December 28, 1990, the interest rate is about 6.48%. To estimate the drift and diffusion around $x = 6.48$, the state-domain focuses on the dynamics where interest rates are around 6.48%, the horizontal bar with interest rates falling in $6.48\% \pm .25\%$. The estimated volatility is basically the sample standard deviation of the differences $\{X_{i\Delta} - X_{(i-1)\Delta}\}$ within this horizontal bar. On the other hand, the time-domain smoothing focuses predominately on the recent history, say one year, as illustrated in the figure. The time-domain estimate of volatility is basically a sample standard deviation within the vertical bar.

$$\text{Yields of 3-months Treasury Bills from 1954 to 2004}$$

Figure 7: Illustration of the time and state-domain smoothing using the yields of 3-month Treasury bills. The state-domain smoothing localizing in the horizontal bars, while the time-domain smoothing concentrating in the vertical bars.

For a given time series, it is hard to say which estimate is better. This depends on the underlying stochastic processes and also on the time when the forecast to be made. If the underlying process is continuous and stationary such as model (5), both methods are applicable. For example, standing on December 28, 1990, one can forecast the volatility by using the sample standard deviation in either the horizontal bar or vertical bar. However, the estimated precision depends on the local data. Since the sample variance is basically linear in the squared differences $\{Z_{i\Delta}^2\}$, the standard errors of both estimates can be assessed and used to guide the forecasting.

For stationary diffusion processes, it is possible to integrate both the time-domain and state-domain estimates. Note that the historical data (with interest rates in $6.48\% \pm .25\%$) are far apart in time (except the last piece, which can be ignored in the state-domain fitting, the last period with the interest rates in $6.48\% \pm .25\%$ is May 15 to July 22, 1988, 135 weeks apart) from the data used in the time-domain smoothing (vertical bar). Hence, these two estimates are nearly independent. The integrated estimate is a linear combination of these two nearly independent estimates. The weights can easily be chosen to minimize the variance of the integrated estimator, by using the assessed
standard errors of the state- and time-domain estimators. The optimal weights are proportional to the variances of the two estimators, which depend on time \(t \). This forms a dynamically integrated predictor for volatility estimation, as the optimal weights change over time.

3.7 Continuously observed data

At theoretical level, one may also examine the problem of estimating the drift and diffusion functions assuming the whole process is observable up to time \(T \). Let us assume again that the observed process \(\{X_t\} \) follows SDE (5). In this case, \(\sigma^2(X_t) \) is the derivative of the quadratic variation process of \(X_t \) and hence is known up to time \(T \). By (11), estimating the drift function \(\mu(x) \) is equivalent to estimating the invariant density \(f \). In fact,

\[
\mu(x) = \frac{\sigma^2(x)f(x)}{[2f(x)]}.
\]

The invariant density \(f \) can easily be estimated by the kernel density estimation. When \(\Delta \to 0 \), the summation in (26) converges to

\[
\hat{f}(x) = T^{-1} \int_0^T K_h(X_t - x)dt.
\]

This forms a kernel density estimate of the invariant density based on the continuously observed data. Thus, an estimator for \(\mu(x) \) can be obtained by substituting \(\hat{f}(x) \) into (29). Such an approach has been employed by Kutoyants (1998) and Dalalyan and Kutoyants (2002, 2003). They established sharp asymptotic minimax risk for estimating the invariant density \(f \) and its derivative, as well as the drift function \(\mu \). In particular, the functions \(f, f' \) and \(\mu \) can be estimated with rate \(T^{-1/2}, T^{-2s/(2s+1)} \) and \(T^{-2s/(2s+1)} \), respectively, where \(s \) is the degree of smoothness of \(\mu \). These are the optimal rates of convergence.

An alternative approach is to estimate the drift function directly from (23). By letting \(\Delta \to 0 \), one can easily obtain a local linear regression estimator for continuously observed data, which admits a similar form to (23) and (30). This is the approach that Spokoiny (2000) used. He showed that this estimator attains the optimal rate of convergence and established further a data-driven bandwidth such that the local linear estimator attains adaptive minimax rates.

4 Estimation of state price densities and transition densities

State-price density (SPD) is the probability density of the value of an asset under the risk-neutral world (14) [see Cox and Ross (1976)] or equivalent martingale measure (Harrison and Kreps, 1979). It is directly related to the pricing of financial derivatives. It is the transition density of \(X_T \) given \(X_0 \) under the equivalent martingale \(Q \). The SPD does not depend on the payoff function and hence it can be used to evaluate other illiquid derivatives, once it is estimated from more liquid derivatives. On the other hand, the transition density characterizes the probability law of a Markovian process and hence is useful for validating Markovian properties and parametric models.
4.1 Estimation of state price density

For some specific models, the state price density can be formed explicitly. For example, for the GBM (1) with a constant risk-free rate r, according to (17), the SPD is log-normal, with mean $\log x_0 + (r - \sigma^2)/(2T)$ and variance σ^2.

Assume that the SPD f^* exists. Then, the European call option can be expressed as

$$ C = \exp(-\int_0^T r_s ds) \int_K^\infty (x - K) f^*(x) dx. $$

See (14) (we have changed the notation from P_0 to C to emphasize the price of the European call option). Hence,

$$ f^*(K) = \exp(\int_0^T r_s ds) \frac{\partial^2 C}{\partial K^2}. \quad (31) $$

This was observed by Breeden and Litzenberger (1978). Thus, the state price density can be estimated from the European call options with different strike prices. With the estimated state price density, one can price new or less-liquid securities such as over the counter derivatives or nontraded options, using formula (14).

In general, the price of an European call option depends on the current stock price S, the strike price K, the time to maturity T, the risk-free interest rate r and dividend yield rate δ. It can be written as $C(S, K, T, r, \delta)$. The exact form of C, in general, is hard to determine, unless we assume the Black-Scholes model. Based on historical data $\{(C_i, S_i, K_i, T_i, r_i, \delta_i), i = 1, \ldots, n\}$, where C_i is the i^{th} traded-option price with associated characteristics $(S_i, K_i, T_i, r_i, \delta_i)$, Aït-Sahalia and Lo (1998) fit the following nonparametric regression

$$ C_i = C(S_i, K_i, T_i, r_i, \delta_i) + \varepsilon_i $$

to obtain an estimate of the function C and hence the SPD f^*.

Due to the curse of dimensionality, the five dimensional nonparametric function cannot be estimated well with practical range of sample sizes. Aït-Sahalia and Lo (1998) realized that and proposed a few dimensionality reduction methods. First, by assuming that the option price depends only on the futures price $F = S \exp((r - \delta)T)$, namely,

$$ C(S, K, T, r, \delta) = C(F, K, T, r) $$

(the Black-Scholes formula satisfies such an assumption), they reduced the dimensionality from 5 to 4. By assuming further that the option-pricing function is homogeneous of degree one in F and K, namely,

$$ C(S, K, T, r, \delta) = KC(F/K, T, r), $$

they reduced the dimensionality to 3. Aït-Sahalia and Lo (1998) imposed a semiparametric form on the pricing formula:

$$ C(S, K, T, r, \delta) = C_{BS}(F, K, T, r, \sigma(F, K, T)), $$
where \(C_{BS}(F, K, T, r, \sigma)\) is the Black-Scholes pricing formula given in (18) and \(\sigma(F, K, T)\) is the implied volatility, computed by inverting the Black-Scholes formula. Thus, the problem becomes nonparametrically estimating the implied volatility function \(\sigma(F, K, T)\). This is estimated by using a nonparametric regression technique from historical data, namely

\[
\sigma_i = \sigma(F_i, K_i, T_i) + \varepsilon_i,
\]

where \(\sigma_i\) is the implied volatility of \(C_i\) by inverting the Black-Scholes formula. By assuming further that \(\sigma(F, K, T) = \sigma(F/K, T)\), the dimensionality is reduced to 2. This is one of the options in Aït-Sahalia and Lo (1998).

The state price density \(f^*\) is non-negative and hence the function \(C\) should be convex in the strike price \(K\). Aït-Sahalia and Duarte (2003) propose to estimate the option price under the convexity constraint, using a local linear estimator. See also Härdle and Yatchew (2002) for a related approach.

4.2 Estimation of transition densities

The transition density of a Markov process characterizes the law of the process, except the initial distribution. It provides useful tools for checking whether or not such a process follows a certain SDE and for statistical estimation and inferences. It is the state price density of the price process under the risk neutral world. If such a process were observable, the state price density would be estimated using the methods to be introduced.

Assume that we have a sample \(\{X_{i\Delta}, i = 0, \cdots, n\}\) from model (5). The “double-kernel” method of Fan et al. (1996) is to observe that

\[
E\{W_{h_2}(X_{i\Delta} - y)|X_{(i-1)\Delta} = x\} \approx p_{\Delta}(y|x), \quad \text{as } h_2 \to 0,
\]

for a kernel function \(W\). Thus, the transition density \(p_{\Delta}(y|x)\) can be regarded approximately as the nonparametric regression function of the response variable \(W_{h_2}(X_{i\Delta} - y)\) on \(X_{(i-1)\Delta}\). An application of the local linear estimator (23) yields

\[
\hat{p}_{\Delta}(y|x) = \frac{1}{n} \sum_{i=1}^{n} K_n(X_{(i-1)\Delta} - x, x)W_{h_2}(X_{i\Delta} - y),
\]

where the equivalent kernel \(K_n(u, x)\) was defined in (24). Fan et al. (1996) establish the asymptotic normality of such an estimator under stationarity and \(\rho\)-mixing conditions [necessarily decaying at geometric rate for SDE (5)], which gives explicitly the asymptotic bias and variance of the estimator. See also §6.5 of Fan and Yao (2003). The cross-validation idea of Rudemo (1982) and Bowman (1984) can be extended to select bandwidths for estimating conditional densities. See Fan and Yim (2005) and Hall et al. (2005).

The transition distribution can be estimated by integrating the estimator (33) over \(y\). By letting \(h_2 \to 0\), the estimator is the regression of the indicator \(I(X_{i\Delta} < y)\) on \(X_{(i-1)\Delta}\).
estimators can be obtained by an application of the local logistic regression and adjusted Nadaraya-Watson method of Hall et al. (1999).

4.3 Inferences based on transition densities

With the estimated transition density, one can now verify whether parametric models such as (1)–(3), (6) are consistent with the observed data. Let \(p_{\Delta,\theta}(y|x) \) be the transition density under a parametric diffusion model. For example, for the CIR model (7), the parameter \(\theta = (\kappa, \alpha, \sigma) \). As in (21), ignoring the initial value \(X_0 \), the parameter \(\theta \) can be estimated by maximizing

\[
\ell(p_{\Delta}) = \sum_{i=1}^{n} \log p_{\Delta,\theta}(X_i\Delta|X_{(i-1)\Delta}).
\]

Let \(\hat{\theta} \) be the maximum likelihood estimator. By the spirit of the GLR of Fan et al. (2001), the GLR test for the null hypothesis \(H_0 : p_{\Delta}(y|x) = p_{\Delta,\hat{\theta}}(y|x) \) is

\[
GLR = \ell(\hat{p}_{\Delta}) - \ell(p_{\Delta,\hat{\theta}}),
\]

where \(\hat{p} \) is a nonparametric estimate of the transition density. Since the transition density cannot be estimated well over the region where data are sparse (usually at boundaries of the process), we need to truncate the nonparametric (and simultaneously parametric) evaluation of the likelihood at appropriate intervals.

In addition to employing the GLR test, one can also compare directly the difference between the parametric and nonparametric fits, resulting in test statistics such as \(\| \hat{p}_{\Delta} - P_{\Delta,\hat{\theta}} \|^2 \) and \(\| \hat{P}_{\Delta} - P_{\Delta,\hat{\theta}} \|^2 \) for an appropriate norm \(\| \cdot \| \), where \(\hat{P}_{\Delta} \) and \(P_{\Delta,\hat{\theta}} \) are the estimates of the cumulative transition distributions under respectively the parametric and nonparametric model. The transition density based methods depend on two bandwidths and are harder to implement. Indeed, its null distributions are harder to determine than those based on the transition distribution methods. In comparisons with the invariant density-based approach of Arapis and Gao (2004), it is consistent against a much larger family of alternatives.

One can also use the transition density to test whether an observed series is Markovian (from personal communication with Yacine Aït-Sahalia). For example, if a process \(\{X_i\Delta\} \) is Markovian, then

\[
p_{2\Delta}(y|x) = \int_{-\infty}^{+\infty} p_{\Delta}(y|z)p_{\Delta}(z|x)dz.
\]

Thus, one can use the distance between \(\hat{p}_{2\Delta}(y|x) \) and \(\int_{-\infty}^{+\infty} \hat{p}_{\Delta}(y|z)\hat{p}_{\Delta}(z|x)dz \) as a test statistic.

Transition density can also be used for parameter estimation. One possible approach is to find the parameter to minimize the distance \(\| \hat{P}_{\Delta} - P_{\Delta,\theta} \| \). In this case, the bandwidth should be chosen to optimize the performance for estimating \(\theta \). The approach is applicable whether or not \(\Delta \to 0 \).
5 Concluding remark

Enormous efforts in financial econometrics have been made in modeling the dynamics of stock prices and bond yields. There are directly related to pricing derivative securities, proprietary trading and portfolio management. Various parametric models have been proposed to facilitate mathematical derivations. They have risks that misspecifications of models lead to erroneous pricing and hedging strategies. Nonparametric models provide a powerful and flexible treatment. They aim at reducing modeling biases by increasing somewhat the variances of resulting estimators. They provide an elegant method for validating or suggesting a family of parametric models.

The versatility of nonparametric techniques in financial econometrics has been demonstrated in this paper. They are applicable to various aspects of diffusion models: drift, diffusion, transition densities, and even state price densities. They allow us to examine whether the stochastic dynamics for stocks and bonds are time varying and whether famous parametric models are consistent with empirical financial data. They permit us to price illiquid or non-traded derivatives from liquid derivatives.

The applications of nonparametric techniques in financial econometrics are far wider than what has been presented. There are several areas where nonparametric methods have played a pivotal role. One example is to test various versions of capital asset pricing models (CAPM) and their related stochastic discount models (Cochrane, 2001). See for example the research manuscript by Chen and Ludvigson (2003) in this direction. Another important class of models are stochastic volatility models (Barndoff-Neilsen and Shephard, 2001 and Shephard 2004), where nonparametric methods can be also applied. The nonparametric techniques have been prominently featured in the RiskMetrics of J. P. Morgan. It can be employed to forecast the risks of portfolios. See, for example, Jorion (2000), Aït-Sahalia and Lo (2000), Fan and Gu (2003), Chen (2005), Chen and Tang (2005) for related nonparametric techniques on risk management.

References

[93] Øksendal, B. *Stochastic Differential Equations: An Introduction with Applications*. Springer-Verlag, Italy.

