Workshop Overview

- July 16-18, 2013 at Stanford University
- 335 attendees from 14 countries
- Sponsored by TRB Committees on:
 - Vehicle-Highway Automation
 - Intelligent Transportation Systems
 - Vehicle User Characteristics
 - Emerging Technology Law
 - Transportation Energy
 - Cyber Security
 - Major Activity Center Circulation Systems
 - Emerging and Innovative Public Transportation and Technologies
Workshop attendance

<table>
<thead>
<tr>
<th>Organization Type</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Institutions</td>
<td>123</td>
</tr>
<tr>
<td>OEMs</td>
<td>58</td>
</tr>
<tr>
<td>Automotive Suppliers</td>
<td>9</td>
</tr>
<tr>
<td>Consulting Firms</td>
<td>35</td>
</tr>
<tr>
<td>Other Industry</td>
<td>39</td>
</tr>
<tr>
<td>Legal & Insurance</td>
<td>19</td>
</tr>
<tr>
<td>Public Sector</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>335</td>
</tr>
</tbody>
</table>
Breakout Discussion Topics

Identifying Research Needs in:

- Automated Commercial Vehicle Operations
- Infrastructure and Operations
- Cybersecurity and Resiliency
- Liability, Risk, and Insurance
- Data Ownership, Access, Protection, and Discovery
- Shared Mobility and Transit
- Testing, Certification, and Licensing
- Energy and Environment
- V2X Communications and Architecture
- Human Factors and Human-Machine Interaction
Automated Commercial Vehicle Operations

- Definition of commercial vehicle applications for automation and estimating their benefits
- Dynamic optimal truck platoon structures (how to sequence trucks in a platoon)
- Automated commercial vehicle training for drivers
Infrastructure and Operations

1. Traffic Management
 - Local vs. Centralized Control/Communication/Coordination (need for a broker)
 - Standardization/Optimization
 - Non-Recurring Information (feedback from crowd-sourcing input)

2. Value of Automation
 - Role of Private Sector
 - Role of Public Sector
 - Defining Goals & Business Model

3. Value of Connectivity
 - Application-specific Requirements
 - Core/Facility Requirements
 - Localized Corrections/Comm.

4. Mapping/Positioning
 - Precision (decimeter level)
 - Accuracy (lane position)
 - Real-Time Updates/Non-Recurring Information (feedback from crowd-sourcing input)
 - Standardization/Optimization

5. Operational Strategies
 - Detection of Bicyclists, Pedestrians and Non-Equipped Vehicles
 - Accommodation for Travelers with Disabilities

6. Managed Lanes
 - Compliance/Enforcement
 - Commercial Vehicles (early deployment, “low-hanging fruit”)
 - Policy (finance/pricing, social equity)
 - Strategy to Deploy/Convert Lanes

7. Impacts on Long-Term Planning
 - Population Distribution
 - Performance Metrics
 - Simulation Tools
 - Impacts on Investments

8. Infrastructure
 - Role & Capabilities
 - Traffic Control Devices and Highway Sensing Systems
 - Pavement Markings
 - Region-Specific Needs
Cyber-security and Resiliency

• Incorporating the hacker mentality into automated road vehicle cyber-security research
• Defining cyber-security resiliency frameworks for road vehicle automation and roadside infrastructure
Liability, Risk and Insurance
Data Ownership, Access, Protection and Discovery

- End-User Privacy Perception
- Privacy Notices at the Testing Stage
- Consumer Privacy Notices by Levels of Automation
- Automated Vehicle Data Disclosure
- Models for Handling Data Collected from Automated Vehicles
Shared Mobility and Transit

- Evaluate impacts of automated valet parking on land use and transportation demand
- Evaluate impacts of automated driving on mobility impaired travelers
- Develop technical basis for international legal framework for certifying automated vehicles
- Integrate automation and shared mobility into the urban fabric
- Define common performance measures for automated shared mobility services
- Estimate additional benefits from high automation on segregated guideways rather than in mixed traffic
- Assess implications of widespread use of SAE Level 5 automation for transportation planning and design
- Develop generic hazard analysis framework for automated transit systems
- Develop collision *avoidance* system for transit buses
Testing, Certification and Licensing

- How to identify relevant automation use cases
- Comparison of automated vehicle evaluation methods (test track, road and simulation tests)
- Incorporation of human responses into testing
- Potential for testing, certification and licensing requirements to become barriers to market entry
- Representing real-world environment and driving behavior to improve simulation fidelity
- Ethical dilemmas in pre-crash decision making
Energy and Environment

• Transportation Demand Effects—Passenger and Freight
• Vehicle Design Changes Facilitated by Automation
• Actions to Improve Environmental and Energy Impacts of Automated Vehicle Systems
V2X Communications and Architecture

- V2X as a Means to Virtually Extend Sensor Range and Coverage
- Models and Simulation of Benefits of V2X Integration in Vehicle Automation
- V2X Communications Quality of Service
Human Factors and Human-Machine Interactions

- Transfer of control from higher to lower automation levels
- Optimal communication of automated vehicle status information to user
- Understanding potential misuse and abuse of road vehicle automation
- Driver adjustability of automated driving
Next Steps

• Research Needs Statements (RNS) drafted by breakout session organizers
• RNS adopted by TRB committees (one or more) and entered into TRB online database
• Available for use and reference by all interested parties:
 – Public and private sector research sponsors
 – System developers and evaluators
 – University research groups and students
 – Individual researchers or entrepreneurs