On robust pricing and hedging and the resulting notions of weak arbitrage

Jan Obłój
University of Oxford
obloj@maths.ox.ac.uk

based on joint works with
Alexander Cox (University of Bath)

Outline

Principal Questions and Answers
 Financial Problem (2 questions)
 Methodology (2 answers)

Double barrier options
 Introduction and types of barriers
 Double no-touch example

Theoretical framework and arbitrages
 Pricing operators and arbitrages
 No arbitrage vs existence of a model
Robust techniques in quantitative finance

Oxford–Man Institute of Quantitative Finance

18–19 March 2010
Robust methods: principal ideas

Model risk:

- Any given model is unlikely to capture the reality.
- Strategies which are sensitive to model assumptions or changes in parameters are questionable.
- We look for strategies which are robust w.r.t. departures from the modelling assumptions.

Market input:

- We want to start by taking information from the market. E.g. prices of liquidly traded instruments should be treated as an input.
- We can then add modelling assumptions and try to see how these affect, for example, admissible prices and hedging techniques.
Robust methods: principal ideas

Model risk:

- Any given model is unlikely to capture the reality.
- Strategies which are sensitive to model assumptions or changes in parameters are questionable.
- We look for strategies which are robust w.r.t. departures from the modelling assumptions.

Market input:

- We want to start by taking information from the market. E.g. prices of liquidly traded instruments should be treated as an input.
- We can then add modelling assumptions and try to see how these affect, for example, admissible prices and hedging techniques.
Robust pricing and hedging: 2 questions

The general setting and challenge is as follows:

- Observe prices of some liquid instruments which admit no arbitrage. (→ interesting questions!)
- **Q1**: *(very) robust pricing*
 Given a new product, determine its feasible price, i.e. range of prices which do not introduce an arbitrage in the market.
- **Q2**: *(very) robust hedging*
 Furthermore, derive tight super-/sub- hedging strategies which always work.

E.g.: Put-Call parity, Up-and-in put
Robust pricing and hedging: 2 questions

The general setting and challenge is as follows:

- Observe prices of some liquid instruments which admit no arbitrage. (⇝ interesting questions!)
- **Q1: (very) robust pricing**
 Given a new product, determine its feasible price, i.e. range of prices which do not introduce an arbitrage in the market.
- **Q2: (very) robust hedging**
 Furthermore, derive tight super-/sub- hedging strategies which always work.

E.g.: Put-Call parity, Up-and-in put
Robust pricing and hedging: 2 questions

The general setting and challenge is as follows:

- Observe prices of some liquid instruments which admit no arbitrage. (→ interesting questions!)

- **Q1: (very) robust pricing**
 Given a new product, determine its feasible price, i.e. range of prices which do not introduce an arbitrage in the market.

- **Q2: (very) robust hedging**
 Furthermore, derive tight super-/sub- hedging strategies which always work.

E.g.: Put-Call parity, Up-and-in put
Robust pricing and hedging: 2 questions

The general setting and challenge is as follows:

- Observe prices of some liquid instruments which admit no arbitrage. (⇝ interesting questions!)
- Q1: (very) robust pricing
 Given a new product, determine its feasible price, i.e. range of prices which do not introduce an arbitrage in the market.
- Q2: (very) robust hedging
 Furthermore, derive tight super-/sub- hedging strategies which always work.

E.g.: Put-Call parity, Up-and-in put
Q1 and the Skorokhod Embedding Problem

Q1: *What is the range of no-arbitrage prices of an option O_T given prices of European calls?*

- Suppose:
 - (S_t) is a continuous martingale under $\mathbb{P} = \mathbb{Q}$,
 - we see market prices $C_T(K) = \mathbb{E}(S_T - K)^+$, $K \geq 0$.
- Equivalently $(S_t : t \leq T)$ is a UI martingale, $S_T \sim \mu$,
 $$\mu(dx) = C''(x)dx.$$
- Via Dubins-Schwarz $S_t = B_{\tau_t}$ is a time-changed Brownian motion. Say we have $O_T = O(S)_T = O(B)_{\tau_T}$.
- We are led then to investigate the bounds
 $$LB = \inf_{\tau} \mathbb{E}O(B)_{\tau}, \quad \text{and} \quad UB = \sup_{\tau} \mathbb{E}O(B)_{\tau},$$
 for all stopping times τ: $B_\tau \sim \mu$ and $(B_{t\wedge \tau})$ a UI martingale, i.e. for all solutions to the Skorokhod Embedding problem.
- The bounds are tight: the process $S_t := B_{\tau_t \wedge \frac{t}{T-t}}$ defines an asset model which matches the market data.
Q1 and the Skorokhod Embedding Problem

Q1: What is the range of no-arbitrage prices of an option O_T given prices of European calls?

- Suppose:
 - (S_t) is a continuous martingale under $\mathbb{P} = \mathbb{Q}$,
 - we see market prices $C_T(K) = \mathbb{E}(S_T - K)^+$, $K \geq 0$.
- Equivalently $(S_t : t \leq T)$ is a UI martingale, $S_T \sim \mu$, $
\mu(dx) = C''(x)dx$.
- Via Dubins-Schwarz $S_t = B_{\tau_t}$ is a time-changed Brownian motion. Say we have $O_T = O(S)_T = O(B)_{\tau_T}$.
- We are led then to investigate the bounds
 $$
 LB = \inf_{\tau} \mathbb{E}O(B)_\tau, \quad \text{and} \quad UB = \sup_{\tau} \mathbb{E}O(B)_\tau,
 $$
 for all stopping times τ: $B_\tau \sim \mu$ and $(B_{t\wedge \tau})$ a UI martingale, i.e. for all solutions to the Skorokhod Embedding problem.
- The bounds are tight: the process $S_t := B_{\tau_t \wedge \frac{t}{T-t}}$ defines an asset model which matches the market data.
Q1 and the Skorokhod Embedding Problem

Q1: What is the range of no-arbitrage prices of an option O_T given prices of European calls?

- Suppose:
 - (S_t) is a continuous martingale under $\mathbb{P} = \mathbb{Q}$,
 - we see market prices $C_T(K) = \mathbb{E}(S_T - K)^+$, $K \geq 0$.
- Equivalently $(S_t : t \leq T)$ is a UI martingale, $S_T \sim \mu$, $\mu(dx) = C''(x)dx$.
- Via Dubins-Schwarz $S_t = B_{\tau_t}$ is a time-changed Brownian motion. Say we have $O_T = O(S)_T = O(B)_{\tau_T}$.
- We are led then to investigate the bounds
 \[LB = \inf_{\tau} \mathbb{E} O(B)_{\tau}, \quad \text{and} \quad UB = \sup_{\tau} \mathbb{E} O(B)_{\tau}, \]
 for all stopping times τ: $B_\tau \sim \mu$ and $(B_t \wedge \tau)$ a UI martingale, i.e. for all solutions to the Skorokhod Embedding problem.
- The bounds are tight: the process $S_t := B_{\tau_T \wedge \frac{t}{T-t}}$ defines an asset model which matches the market data.
Q1 and the Skorokhod Embedding Problem

Q1: What is the range of no-arbitrage prices of an option O_T given prices of European calls?

- Suppose:
 - (S_t) is a continuous martingale under $\mathbb{P} = \mathbb{Q}$,
 - we see market prices $C_T(K) = \mathbb{E}(S_T - K)^+, K \geq 0$.

- Equivalently $(S_t : t \leq T)$ is a UI martingale, $S_T \sim \mu$, $\mu(dx) = C''(x)dx$.

- Via Dubins-Schwarz $S_t = B_{\tau_t}$ is a time-changed Brownian motion. Say we have $O_T = O(S)_T = O(B)_{\tau_T}$.

- We are led then to investigate the bounds

$$LB = \inf_{\tau} \mathbb{E}O(B)_{\tau}, \text{ and } UB = \sup_{\tau} \mathbb{E}O(B)_{\tau},$$

for all stopping times τ: $B_\tau \sim \mu$ and $(B_{t\wedge \tau})$ a UI martingale, i.e. for all solutions to the Skorokhod Embedding problem.

- The bounds are tight: the process $S_t := B_{\tau_t \wedge \frac{t}{T-t}}$ defines an asset model which matches the market data.
Q2 and pathwise inequalities

Q2: *if we see a price outside the bounds \((LB, UB)\) can we (and how) realise a risk-less profit?*

- Consider UB. The idea is to devise inequalities of the form

 \[O(B)_t \leq N_t + F(B_t), \quad t \geq 0, \]

 with equality for some \(\tau^*\) with \(B_{\tau^*} \sim \mu\), and where \(N\) is a martingale (i.e. trading strategy), \(\mathbb{E}N_{\tau^*} = 0\).

- Then \(UB = \mathbb{E}F(S_T)\) and \(+ F(S_t)\) is a valid superhedge. It involves dynamic trading and a static position in calls \(F(S_T)\).

- Furthermore, we want \((N_{\tau_t})\) explicitly. We are naturally restricted to the family of martingales \(N_t = N(B_t, A_t)\), for some process \((A_t)\) related to the option \(O_t\), e.g. maximum and minimum processes for barrier options.
Q2 and pathwise inequalities

Q2: if we see a price outside the bounds \((LB, UB)\) can we (and how) realise a risk-less profit?

- Consider UB. The idea is to devise inequalities of the form

\[
O(B)_t \leq N_t + F(B_t), \quad t \geq 0,
\]

with equality for some \(\tau^*\) with \(B_{\tau^*} \sim \mu\), and where \(N_t\) is a martingale (i.e. trading strategy), \(\mathbb{E}N_{\tau^*} = 0\).

- Then \(UB = \mathbb{E}F(S_T)\) and \(N_{\tau_t} + F(S_t)\) is a valid superhedge. It involves dynamic trading \((N_{\tau_t})\) and a static position in calls \(F(S_T)\).

- Furthermore, we want \((N_{\tau_t})\) explicitly. We are naturally restricted to the family of martingales \(N_t = N(B_t, A_t)\), for some process \((A_t)\) related to the option \(O_t\), e.g. maximum and minimum processes for barrier options.
Q2 and pathwise inequalities

Q2: if we see a price outside the bounds (LB, UB) can we (and how) realise a risk-less profit?

- Consider UB. The idea is to devise inequalities of the form
 \[O(B)_t \leq N_t + F(B_t), \quad t \geq 0, \]
 with equality for some \(\tau^* \) with \(B_{\tau^*} \sim \mu \), and where \(N_t \) is a martingale (i.e. trading strategy), \(\mathbb{E} N_{\tau^*} = 0 \).
- Then \(UB = \mathbb{E} F(S_T) \) and \(N_{\tau_t} + F(S_t) \) is a valid superhedge. It involves dynamic trading \((N_{\tau_t}) \) and a static position in calls \(F(S_T) \).
- Furthermore, we want \((N_{\tau_t}) \) explicitly. We are naturally restricted to the family of martingales \(N_t = N(B_t, A_t) \), for some process \((A_t) \) related to the option \(O_t \), e.g. maximum and minimum processes for barrier options.
Q2 and pathwise inequalities

Q2: if we see a price outside the bounds \((LB, UB)\) can we (and how) realise a risk-less profit?

- Consider UB. The idea is to devise inequalities of the form

\[
O(B)_t \leq N_t + F(B_t), \quad t \geq 0,
\]

with equality for some \(\tau^*\) with \(B_{\tau^*} \sim \mu\), and where \(N_t\) is a martingale (i.e. trading strategy), \(\mathbb{E}N_{\tau^*} = 0\).

- Then \(UB = \mathbb{E}F(S_T)\) and \(N_{\tau_t} + F(S_t)\) is a valid superhedge. It involves dynamic trading \((N_{\tau_t})\) and a static position in calls \(F(S_T)\).

- Furthermore, we want \((N_{\tau_t})\) explicitly. We are naturally restricted to the family of martingales \(N_t = N(B_t, A_t)\), for some process \((A_t)\) related to the option \(O_t\), e.g. maximum and minimum processes for barrier options.
Q2 and pathwise inequalities

Q2: if we see a price outside the bounds \((LB, UB)\) can we (and how) realise a risk-less profit?

- Consider UB. The idea is to devise inequalities of the form

\[
O(B)_t \leq N(B_t, A_t) + F(B_t), \quad t \geq 0,
\]

with equality for some \(\tau^*\) with \(B_{\tau^*} \sim \mu\), and where \(N(B_t, A_t)\) is a martingale (i.e. trading strategy), \(\mathbb{E} N_{\tau^*} = 0\).

- Then \(UB = \mathbb{E} F(S_T)\) and \(N(S_t, A^S_t) + F(S_t)\) is a valid superhedge. It involves dynamic trading \(N(S_t, A^S_t)\) and a static position in calls \(F(S_T)\).

- Furthermore, we want \((N_{\tau_t})\) explicitly. We are naturally restricted to the family of martingales \(N_t = N(B_t, A_t)\), for some process \((A_t)\) related to the option \(O_t\), e.g. maximum and minimum processes for barrier options.
Scope of applications

- **Answer to Q1 and pricing**: in practice $LB \ll UB$, the bounds are *too wide* to be of any use for pricing.
- **Answer to Q2 and hedging**: say an agent sells O_T for price p. She then can set up our super-hedge for UB. At the expiry she holds

$$X = p - UB + F(S_T) + N(S_T, A^S_T) - O_T.$$

We have $\mathbb{E}^Q X = 0$ and $X \geq p - UB$. The hedge might have a considerable variance but the loss is bounded below (for all $t \leq T$). The hedge is very robust as we make virtually no modelling assumptions and only use market input. This can be advantageous in presence of

- model uncertainty
- transaction costs
- illiquid markets.

Numerical simulations indicate that a risk averse agent prefers robust hedges to delta/vega hedging.
Scope of applications

- **Answer to Q1 and pricing:** in practice $LB << UB$, the bounds are *too wide* to be of any use for pricing.
- **Answer to Q2 and hedging:** say an agent sells O_T for price p. She then can set up our super-hedge for UB. At the expiry she holds

$$X = p - UB + F(S_T) + N(S_T, A^S_T) - O_T.$$

We have $\mathbb{E}^Q X = 0$ and $X \geq p - UB$. The hedge might have a considerable variance but the loss is bounded below (for all $t \leq T$). The hedge is very robust as we make virtually no modelling assumptions and only use market input. This can be advantageous in presence of

- model uncertainty
- transaction costs
- illiquid markets.

Numerical simulations indicate that a risk averse agent prefers robust hedges to delta/vega hedging.
References and current works

Previous works adapting the strategy:

As well as:

- *forward starting options* (D. Hobson and A. Neuberger, ...)
- *volatility derivatives* (B. Dupire, R. Lee, ...)
- *double barrier options* (A. Cox and J.O., arxiv: 0808.4012, 0901.0674 ...)
- *variance swaps* (M. Davis, J.O. and V. Raval)
Double barriers - introduction

We want to apply the above methodology to derivatives with digital payoff conditional on the stock price reaching/not reaching two levels.

Continuity of paths implies level crossings (i.e. payoffs) are not affected by time-changing.

An example is given by a double touch:

\[
1_{\sup_{t \leq T} S_t \geq b \text{ and } \inf_{t \leq T} S_t \leq b}.
\]

\[
\leadsto 1_{\sup_{u \leq \tau} B_u \geq b \text{ and } \inf_{u \leq \tau} B_u \leq b}.
\]

In general the option pays 1 on the event

\[
\left\{ \sup_{t \leq T} S_t \left(\begin{array}{c} \leq b \\ \geq \end{array} \right) \text{ (and) } \inf_{t \leq T} S_t \left(\begin{array}{c} \leq b \\ \geq \end{array} \right) \right\}
\]
Double barriers - introduction

We want to apply the above methodology to derivatives with digital payoff conditional on the stock price reaching/not reaching two levels. Continuity of paths implies level crossings (i.e. payoffs) are not affected by time-changing.

An example is given by a double touch:

\[1_{\sup_{t \leq T} S_t \geq b \text{ and } \inf_{t \leq T} S_t \leq b}. \]

\[\leadsto 1_{\sup_{u \leq \tau} B_u \geq b \text{ and } \inf_{u \leq \tau} B_u \leq b}. \]

In general the option pays 1 on the event

\[\left\{ \sup_{t \leq T} S_t \begin{pmatrix} \leq \end{pmatrix} b \begin{pmatrix} \text{ and } \end{pmatrix} \inf_{t \leq T} S_t \begin{pmatrix} \geq \end{pmatrix} b \right\}. \]
There are 8 possible digital double barrier options. However using complements and symmetry, it suffices to consider 3 types:

- **double touch option** \leadsto new solutions to the SEP.
- **double touch/no-touch option** \leadsto new solutions to the SEP.
- **double no-touch option** \leadsto maximised by Perkins’ construction and minimised by the tilted-Jacka (A. Cox) construction.
Double barriers - introduction

There are 8 possible digital double barrier options. However using complements and symmetry, it suffices to consider 3 types:

- *double touch option* \rightsquigarrow new solutions to the SEP.
- *double touch/no-touch option* \rightsquigarrow new solutions to the SEP.
- *double no-touch option* \rightsquigarrow maximised by Perkins’ construction and minimised by the tilted-Jacka (A. Cox) construction.
There are 8 possible digital double barrier options. However using complements and symmetry, it suffices to consider 3 types:

- **double touch option** \rightsquigarrow new solutions to the SEP.
- **double touch/no-touch option** \rightsquigarrow new solutions to the SEP.
- **double no-touch option** \rightsquigarrow maximised by Perkins’ construction and minimised by the tilted-Jacka (A. Cox) construction.
Double no-touch: Answer to Q1

- Write $\bar{B}_t = \sup_{s \leq t} B_s$, $\underline{B}_t = \inf_{s \leq t} B_s$:

$$\inf\{t : B_t \notin (\gamma-(\bar{B}_t), \gamma+(\underline{B}_t))\}$$

- Maximises:

$$\mathbb{P}(B_\tau \geq b \text{ and } \bar{B}_\tau \leq \bar{b})$$

- Perkins (1985)
Double no–touch: Answer to Q1

- Write $\overline{B}_t = \sup_{s \leq t} B_s$, $\underline{B}_t = \inf_{s \leq t} B_s$:

 \[\inf\{t : B_t \notin (\gamma_-(\overline{B}_t), \gamma_+(-\overline{B}_t))\} \]

- Maximises:

 \[\mathbb{P}(\overline{B}_\tau \geq b \text{ and } \overline{B}_\tau \leq \overline{b}) \]

- Perkins (1985)
Double no–touch: Answer to Q2

- Consider pathwise inequality:

\[
\mathbf{1}_{\{S_T \geq b, S_T \leq b\}} \leq \mathbf{1}_{S_T > b} \left(\frac{(b - S_T)^+}{K - b} + \frac{(S_T - K)^+}{K - b} - \frac{S_T - b}{K - b}\right) \mathbf{1}_{S_T \leq b}
\]

where \(b < S_0 < K\).

- When \(S_T > b\), we get:

\[
1 \leq \mathbf{1}_{S_T > b} + \frac{(S_T - K)^+}{K - b}
\]
Double no-touch: Answer to Q2

- Consider pathwise inequality:

\[1 \{ S_T \geq b, S_T \leq b \} \leq 1_{S_T > b} \frac{(b - S_T)^+}{K - b} + \frac{(S_T - K)^+}{K - b} - \frac{S_T - b}{K - b} 1_{S_T \leq b} \]

where \(b < S_0 < K \).

- When \(S_T \leq b \), we get:

\[0 \leq \frac{(K - S_T)^+}{K - b} 1_{\{S_T > b\}} \]
Double no-touch: Answer to Q2

- Consider pathwise inequality:

\[1_{\{S_T \geq b, S_T \leq b\}} \leq 1_{S_T > b} \left(\frac{(b - S_T)^+}{K - b} + \frac{(S_T - K)^+}{K - b} \right) - \frac{S_T - b}{K - b} 1_{S_T \leq b} \]

where \(b < S_0 < K \).

This is a model-free superhedging strategy for any \(b < K \).
Double no–touch: Answer to Q2

Consider pathwise inequality:

\[1_{\{S_T \geq b, \overline{S}_T \leq \overline{b}\}} \leq 1_{S_T > b} \left(\frac{(b - S_T)^+}{K - b} \right) - \frac{(S_T - K)^+}{K - b} \]

Digital call

\[- \frac{S_T - b}{K - b} 1_{S_T \leq b} \]

Puts

\[\text{Calls} \]

Forwards upon hitting \(b \)

\[=: \overline{H}^{ll}(K) \]

This is a model–free superhedging strategy for any \(b < K \), assuming \((S_t)\) does not jump across the barrier \(b \).
Double no-touch: Answer to Q2

- Consider pathwise inequality:

\[
1_{\{S_T \geq b, S_T \leq \bar{b}\}} \leq 1_{S_T > b} - \underbrace{\frac{(b - S_T)^+}{K - b}}_{\text{Digital call}} \underbrace{\frac{(S_T - K)^+}{K - b}}_{\text{Calls}} + \underbrace{\frac{S_T - b}{K - b} 1_{S_T \leq b}}_{\text{Puts}} =: \overline{H}^{II}(K)
\]

We would like to show that it is a hedging strategy in some model. It turns out that the above construction is not always optimal — there are two more strategies \(\overline{H}^I, \overline{H}^{III}(K)\) we need to consider. Above we superheded \(1_{S_T > b}\) as in Brown, Hobson, Rogers (2001) and it’s good only for \(b < S_0 << \bar{b}\).
Double touch: superhedging

Write \mathcal{P} for the pricing operator. No arbitrage should imply:

$$\mathcal{P}1_{\{S_T \geq b, S_T \leq \bar{b}\}} \leq \inf \left\{ \mathcal{P}H^I, \mathcal{P}H^{II}(K_2), \mathcal{P}H^{III}(K_3) \right\} =: UB \quad (\dagger)$$

where the infimum is taken over values of $K_2 > b$, $K_3 < \bar{b}$.

Theorem (”Meta-Theorem”)

No arbitrage iff (\dagger) holds and for any given curve of call prices there exists a stock price process for which (\dagger) is the price of the double no–touch option.
Double touch: superhedging

Write \mathcal{P} for the pricing operator. No arbitrage should imply:

$$\mathcal{P} \mathbf{1}_{\{S_T \geq b, S_T \leq \bar{b}\}} \leq \inf \left\{ \mathcal{P} \bar{H}^I, \mathcal{P} \bar{H}^{II}(K_2), \mathcal{P} \bar{H}^{III}(K_3) \right\} =: UB \quad (\dagger)$$

where the infimum is taken over values of $K_2 > b$, $K_3 < \bar{b}$.

Theorem ("Meta-Theorem")

No arbitrage *iff* (\dagger) holds *and* for any given curve of call prices there exists a stock price process for which (\dagger) is the price of the double no–touch option.
Principal Questions and Answers

Double barrier options

Theoretical framework and arbitrages

General setup

We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\), and \((S_t)\) has zero cost of carry (e.g. interest rates are zero). The set of traded assets \(\mathcal{X}\) is given. On this set we have a pricing operator \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\), \(\mathcal{P} : \text{Lin}(\mathcal{X}) \to \mathbb{R}\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\)-market model if there is a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\) with \(\mathcal{P}X = E^\mathbb{Q}X, X \in \mathcal{X}\).

We would like to have

\(\mathcal{P}\) admits no arbitrage on \(\mathcal{X}\) \iff there exists a market model

Then we want to consider \(\mathcal{X} \cup \{O_T\}\) for an exotic \(O_T : \mathcal{P} \to \mathbb{R}\) and say

\(\mathcal{P}\) admits no arbitrage on \(\mathcal{X} \cup \{O_T\}\) \iff \(LB \leq \mathcal{P}O_T \leq UB\)

\iff there exists a \((\mathcal{P}, \mathcal{X} \cup \{O_T\})\)-market model
General setup

We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\), and \((S_t)\) has zero cost of carry (e.g. interest rates are zero).

The set of traded assets \(\mathcal{X}\) is given. On this set we have a pricing operator \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\), \(\mathcal{P} : \text{Lin}(\mathcal{X}) \rightarrow \mathbb{R}\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\)-market model if there is a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\) with \(\mathcal{P}X = \mathbb{E}^\mathbb{Q}X, X \in \mathcal{X}\).

We would like to have

\[\mathcal{P} \text{ admits no arbitrage on } \mathcal{X} \iff \text{there exists a market model} \]

Then we want to consider \(\mathcal{X} \cup \{O_T\}\) for an exotic \(O_T : \mathcal{P} \rightarrow \mathbb{R}\) and say

\[\mathcal{P} \text{ admits no arbitrage on } \mathcal{X} \cup \{O_T\} \iff LB \leq \mathcal{P}O_T \leq UB \]

\[\iff \text{there exists a } (\mathcal{P}, \mathcal{X} \cup \{O_T\})\text{-market model} \]
General setup

We assume \((S_t : t \leq T)\) takes values in some functional space \(\mathcal{P}\), and \((S_t)\) has zero cost of carry (e.g. interest rates are zero). The set of traded assets \(\mathcal{X}\) is given. On this set we have a **pricing operator** \(\mathcal{P}\) which acts linearly on \(\mathcal{X}\), \(\mathcal{P} : \text{Lin}(\mathcal{X}) \to \mathbb{R}\).

We say that there exists a \((\mathcal{P}, \mathcal{X})\)-market model if there is a model \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{Q}, (S_t))\) with \(\mathcal{P}X = \mathbb{E}^Q X, X \in \mathcal{X}\).

We would like to have

\(\mathcal{P}\) admits **no arbitrage** on \(\mathcal{X}\) \(\iff\) there exists a market model

Then we want to consider \(\mathcal{X} \cup \{O_T\}\) for an exotic \(O_T : \mathcal{P} \to \mathbb{R}\) and say

\(\mathcal{P}\) admits **no arbitrage** on \(\mathcal{X} \cup \{O_T\}\) \(\iff\) \(LB \leq \mathcal{P}O_T \leq UB\) \(\iff\) there exists a \((\mathcal{P}, \mathcal{X} \cup \{O_T\})\)-market model
Three notions of arbitrage

Definition (Model–free arbitrage)

We say that \mathcal{P} admits a **model–free arbitrage** on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.
Three notions of arbitrage

Definition (Model–free arbitrage)

We say that \mathcal{P} admits a model–free arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.

This coarsest notion is typically sufficient to derive no–arbitrage bounds but *not* sufficient to give existence of a market model. Consider $\mathcal{X} = \{(S_T - K)^+ : K \in K = \{K_1, \ldots, K_n\}\}$. No MFA implies interpolation of $C(K) := \mathcal{P}(S_T - K)^+$ is convex and non-increasing. We could have $C(K_{n-1}) = C(K_n) > 0$. But this leads to arbitrage strategies:

- if I have a model with $S_T \leq K_n$ a.s., I sell call with strike K_n,
- if I have a model with $\mathbb{P}(S_T > K_n) > 0$ I sell call with strike K_n and buy call with strike K_{n-1}.
Three notions of arbitrage

Definition (Model–free arbitrage)

We say that \mathcal{P} admits a model–free arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.

Definition (Weak arbitrage (Davis & Hobson 2007))

We say that \mathcal{P} admits a weak arbitrage on \mathcal{X} if for any model, there exists $X \in \text{Lin}(\mathcal{X})$ with $\mathcal{P}X \leq 0$ but $\mathbb{P}(X \geq 0) = 1$, $\mathbb{P}(X > 0) > 0$.

Definition (Weak free lunch with vanishing risk)

We say that \mathcal{P} admits a weak free lunch with vanishing risk on \mathcal{X} if there exists $X_n, Z \in \text{Lin}(\mathcal{X})$ such that $X_n \rightarrow X$ (pointwise on \mathcal{P}), $X_n \geq Z$, $X \geq 0$ and $\lim \mathcal{P}X_n < 0$.
Three notions of arbitrage

Definition (Model–free arbitrage)
We say that \mathcal{P} admits a model–free arbitrage on \mathcal{X} if there exists $X \in \text{Lin}(\mathcal{X})$ with $X \geq 0$ and $\mathcal{P}X < 0$.

Definition (Weak arbitrage (Davis & Hobson 2007))
We say that \mathcal{P} admits a weak arbitrage on \mathcal{X} if for any model, there exists $X \in \text{Lin}(\mathcal{X})$ with $\mathcal{P}X \leq 0$ but $\mathbb{P}(X \geq 0) = 1$, $\mathbb{P}(X > 0) > 0$.

Definition (Weak free lunch with vanishing risk)
We say that \mathcal{P} admits a weak free lunch with vanishing risk on \mathcal{X} if there exists $X_n, Z \in \text{Lin}(\mathcal{X})$ such that $X_n \to X$ (pointwise on \mathcal{P}), $X_n \geq Z$, $X \geq 0$ and $\lim \mathcal{P}X_n < 0$.
Call prices and no arbitrages

Proposition (Davis and Hobson (2007))

Let $\mathcal{X} = \{1, (S_T - K)^+ : K \in \mathbb{K}\}$ be finite. Then \mathcal{P} admits no WA on \mathcal{X} if and only if there exists a $(\mathcal{P}, \mathcal{X})$-market model.
Call prices and no arbitrages

Proposition

Let $\mathcal{X} = \{1, (S_T - K)^+ : K \geq 0\}$. Then \mathcal{P} admits no WFLVR on \mathcal{X} if and only if there exists a $(\mathcal{P}, \mathcal{X})$-market model, which happens if and only if

$$C(K) = \mathcal{P}(S_T - K)^+ \geq 0$$

is convex and non-increasing,

and $C(0) = S_0$, $C'_+(0) \geq -1$,

$$C(K) \to 0 \text{ as } K \to \infty.$$ \hspace{1cm} (1)

In comparison, \mathcal{P} admits no model-free arbitrage on \mathcal{X} if and only if (1) holds. In consequence, when (1) holds but (2) fails \mathcal{P} admits no model-free arbitrage but a market model does not exist.
Call and digital call prices and no arbitrages

Proposition

Let \(\mathcal{X} = \{ 1, 1_{S_T > b}, 1_{S_T \geq \bar{b}}, (S_T - K)^+ : K \geq 0 \} \). Then \(\mathcal{P} \) admits no WFLVR on \(\mathcal{X} \) if and only if there exists a \((\mathcal{P}, \mathcal{X}) \)-market model, which happens if and only if \(C(K) \) is as previously and

\[
\mathcal{P} 1_{S_T > b} = -C'(b+) \quad \text{and} \quad \mathcal{P} 1_{S_T \geq \bar{b}} = -C'(\bar{b}-).
\]
Call and digital call prices and no arbitrages

Proposition

Let \(\mathcal{X} = \{1, 1_{S_T > b}, 1_{S_T \geq b}, (S_T - K)^+ : K \geq 0\} \). Then \(\mathcal{P} \) admits no WFLVR on \(\mathcal{X} \) if and only if there exists a \((\mathcal{P}, \mathcal{X})\)-market model, which happens if and only if \(C(K) \) is as previously and

\[
\mathcal{P}1_{S_T > b} = -C'(b+) \quad \text{and} \quad \mathcal{P}1_{S_T \geq b} = -C'(b-).
\]

Proposition

Let \(\mathcal{X} = \{1, 1_{S_T > b}, 1_{S_T \geq b}, (S_T - K)^+ : K \in \mathbb{K}\} \) be finite. Then \(\mathcal{P} \) admits no WA on \(\mathcal{X} \) if and only if there exists a \((\mathcal{P}, \mathcal{X})\)-market model.

In both cases no WFLVR or no WA are strictly stronger than no model–free arbitrage.
Call and digital call prices and no arbitrages

Proposition

Let $\mathcal{X} = \{1, 1_{S_T > b}, 1_{S_T \geq b}, (S_T - K)^+ : K \geq 0\}$. Then \mathcal{P} admits no WFLVR on \mathcal{X} if and only if there exists a $(\mathcal{P}, \mathcal{X})$-market model, which happens if and only if $C(K)$ is as previously and

$$\mathcal{P}1_{S_T > b} = -C'(b+) \quad \text{and} \quad \mathcal{P}1_{S_T \geq b} = -C'(b-).$$

Proposition

Let $\mathcal{X} = \{1, 1_{S_T > b}, 1_{S_T \geq b}, (S_T - K)^+ : K \in \mathbb{K}\}$ be finite. Then \mathcal{P} admits no WA on \mathcal{X} if and only if there exists a $(\mathcal{P}, \mathcal{X})$-market model.

In both cases no WFLVR or no WA are strictly stronger than no model–free arbitrage.
Double barriers and no–arbitrage

Theorem

Let $\mathcal{P} = C([0, T])$. Suppose \mathcal{P} admits no WFLVR on $\mathcal{X} = \{\text{forwards}\} \cup \{1, 1_{S_T > b}, 1_{S_T \geq \bar{b}}, (S_T - K)^+: K \geq 0\}$. Then the following are equivalent:

- \mathcal{P} admits no WFLVR on $\mathcal{X} \cup \{1_{S_T \geq \bar{b}, S_T \leq b}\}$,
- there exists a $(\mathcal{P}, \mathcal{X} \cup \{1_{S_T \geq \bar{b}, S_T \leq b}\})$ market model,
-

$$
\mathcal{P}(1_{S_T \geq \bar{b}, S_T \leq b}) \leq \inf \left\{ \mathcal{P}(\overline{H}^I), \mathcal{P}(\overline{H}^{II}(K_2)), \mathcal{P}(\overline{H}^{III}(K_3)) \right\},
$$

$$
\mathcal{P}(1_{S_T \geq \bar{b}, S_T \leq b}) \geq \sup \left\{ \mathcal{P}(H^I), \mathcal{P}(H^{II}(K_1, K_2)) \right\}.
$$

(and we specify the hedges & strike(s) which attain inf/sup).

All our main results for digital double barriers are of this type with WA replacing WLVR for the case of finite family of traded strikes.
Summary

- Given a set of traded assets we want to construct robust super- and sub- hedging strategies of an exotic option. Further, we want them to be optimal in the sense that there exists a model, matching the market input, in which they are the hedging strategies.

- We carry out this programme for all types of digital double barrier options when the set of traded assets includes calls, digital calls and forward transactions.

- We introduce a formalism for the model–free setup and define stronger notions of arbitrage (WFLVR and WA).

- There exists a market model (matching the input) iff appropriate no–arbitrage holds. Further, the same holds if we add a double barrier, and this is equivalent to its price being within the bounds we derive.
Summary

- Given a set of traded assets we want to construct robust super- and sub- hedging strategies of an exotic option. Further, we want them to be optimal in the sense that there exists a model, matching the market input, in which they are the hedging strategies.

- We carry out this programme for all types of digital double barrier options when the set of traded assets includes calls, digital calls and forward transactions.

- We introduce a formalism for the model–free setup and define stronger notions of arbitrage (WFLVR and WA).

- There exists a market model (matching the input) iff appropriate no–arbitrage holds. Further, the same holds if we add a double barrier, and this is equivalent to its price being within the bounds we derive.
Summary

• Given a set of traded assets we want to construct robust super- and sub-hedging strategies of an exotic option. Further, we want them to be optimal in the sense that there exists a model, matching the market input, in which they are the hedging strategies.

• We carry out this programme for all types of digital double barrier options when the set of traded assets includes calls, digital calls and forward transactions.

• We introduce a formalism for the model–free setup and define stronger notions of arbitrage (WFLVR and WA).

• There exists a market model (matching the input) iff appropriate no–arbitrage holds. Further, the same holds if we add a double barrier, and this is equivalent to its price being within the bounds we derive.
Summary

- Given a set of traded assets we want to construct robust super- and sub- hedging strategies of an exotic option. Further, we want them to be optimal in the sense that there exists a model, matching the market input, in which they are the hedging strategies.
- We carry out this programme for all types of digital double barrier options when the set of traded assets includes calls, digital calls and forward transactions.
- We introduce a formalism for the model–free setup and define stronger notions of arbitrage (WFLVR and WA).
- There exists a market model (matching the input) iff appropriate no–arbitrage holds. Further, the same holds if we add a double barrier, and this is equivalent to its price being within the bounds we derive.