Portfolio Choice via Quantiles

Xuedong He

Oxford

Princeton University/March 28, 2009

Based on the joint work with Prof Xunyu Zhou
Study on continuous-time portfolio choice has predominantly centred around expected utility maximisation
Study on continuous-time portfolio choice has predominantly centred around expected utility maximisation.

However, some of the basic tenets of expected utility are systematically violated in practice.
Study on continuous-time portfolio choice has predominantly centred around expected utility maximisation.

However, some of the basic tenets of expected utility are systematically violated in practice.

Many alternative preferences have been put forth, especially in behavioural finance.
Study on continuous-time portfolio choice has predominantly centred around expected utility maximisation.

However, some of the basic tenets of expected utility are systematically violated in practice.

Many alternative preferences have been put forth, especially in behavioural finance.

- Yaari’s “dual theory of choice” [Yaari (1987)]
Study on continuous-time portfolio choice has predominantly centred around expected utility maximisation.

However, some of the basic tenets of expected utility are systematically violated in practice.

Many alternative preferences have been put forth, especially in behavioural finance:
- Yaari’s “dual theory of choice” [Yaari (1987)]
- Kahneman and Tversky’s prospect theory [Kahneman and Tversky (1979), Tversky and Kahneman (1992)]
Study on continuous-time portfolio choice has predominantly centred around expected utility maximisation.

However, some of the basic tenets of expected utility are systematically violated in practice.

Many alternative preferences have been put forth, especially in behavioural finance:
- Yaari’s “dual theory of choice” [Yaari (1987)]
- Kahneman and Tversky’s prospect theory [Kahneman and Tversky (1979), Tversky and Kahneman (1992)]
- Lopes’ SP/A theory [Lopes (1987) and Lopes and Oden (1999)]
Another large set of portfolio choice problems involve probability and VaR/CVaR, instead of expectation, in objectives and/or constraints.
Alternative Models

Another large set of portfolio choice problems involve probability and VaR/CVaR, instead of expectation, in objectives and/or constraints.

Goal achieving problem [Kullendorff (1993), Heath (1993) and Browne (1999)]
Another large set of portfolio choice problems involve probability and VaR/CVaR, instead of expectation, in objectives and/or constraints.

- Goal achieving problem [Kulldorff (1993), Heath (1993) and Browne (1999)]
- VaR/CVaR [Rockafellar and Uryasev (2000)]
Another large set of portfolio choice problems involve probability and VaR/CVaR, instead of expectation, in objectives and/or constraints:

- Goal achieving problem [Kulldorff (1993), Heath (1993) and Browne (1999)]
- VaR/CVaR [Rockafellar and Uryasev (2000)]
- Law-invariant coherent risk measure [Artzner, Delbaen, Eber and Heath (1999) and Kusuoka (2001)]
Some of them have been studied case by case, and many of them are completely unexplored.
Some of them have been studied case by case, and many of them are completely unexplored.

Main difficulties include the non-concavity and time-inconsistency.
Some of them have been studied case by case, and many of them are completely unexplored.

Main difficulties include the non-concavity and time-inconsistency.

In this work, we propose a new framework to accommodate most of the aforementioned preferences and develop a new technique to solve the model.
Continuous time market
• Continuous time market
• Tame portfolios
- Continuous time market
- Tame portfolios
- Arbitrage-free and complete market
- Continuous time market
- Tame portfolios
- Arbitrage-free and complete market
- Dynamic portfolio selection can be translated into a static problem of choosing the optimal terminal payoff
Continuous time market

Tame portfolios

Arbitrage-free and complete market

Dynamic portfolio selection can be translated into a static problem of choosing the optimal terminal payoff

“The more money the better”
A Non-Expected Utility Maximisation Model

We consider the following portfolio selection problem

\[
\begin{align*}
\text{Max}_X & \quad V(X) := \int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x)) \right] \\
\text{Subject to} & \quad F_X(\cdot) \in \mathcal{F} \cap \mathcal{D}, \\
& \quad E[\rho X] \leq x_0
\end{align*}
\]
A Non-Expected Utility Maximisation Model

- We consider the following portfolio selection problem

\[
\begin{align*}
\text{Max}_X & \quad V(X) := \int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x))\right] \\
\text{Subject to} & \quad F_X(\cdot) \in \mathbb{F} \cap \mathbb{D}, \\
& \quad E[\rho X] \leq x_0
\end{align*}
\]

- \(u(\cdot): \) utility function; \(T(\cdot): \) distortion function
We consider the following portfolio selection problem

\[
\begin{align*}
\text{Max}_{X} & \quad V(X) := \int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x)) \right] \\
\text{Subject to} & \quad F_X(\cdot) \in \mathcal{F} \cap \mathcal{D}, \\
& \quad E[\rho X] \leq x_0
\end{align*}
\]

- \(u(\cdot)\): utility function; \(T(\cdot)\): distortion function
- \(\mathcal{F}\) is the set of distribution functions consistent with tame portfolios

\[
\mathcal{F} = \{F(\cdot) : \mathbb{R} \rightarrow [0, 1] \mid F(\cdot) \text{ is increasing, càdlàg and } F(c) = 0 \text{ for some } c \in \mathbb{R}\}
\]
We consider the following portfolio selection problem

\[
\max_X V(X) := \int_{-\infty}^{\infty} u(x) d[-T(1 - F_X(x))]
\]

Subject to \(F_X(\cdot) \in \mathcal{F} \cap \mathcal{D} \),
\[E[\rho X] \leq x_0 \]

- \(u(\cdot) \): utility function; \(T(\cdot) \): distortion function
- \(\mathcal{F} \) is the set of distribution functions consistent with tame portfolios
 \[
 \mathcal{F} = \{ F(\cdot) : \mathbb{R} \to [0, 1] \mid F(\cdot) \text{ is increasing, càdlàg and } F(c) = 0 \text{ for some } c \in \mathbb{R} \}
 \]
- \(\mathcal{D} \) is a subset of \(\mathcal{F} \), specifying the constraints imposed on the terminal payoff
A Non-Expected Utility Maximisation Model

We consider the following portfolio selection problem

\[
\max_X \quad V(X) := \int_{-\infty}^{\infty} u(x)d\left[-T(1 - F_X(x))\right]
\]

Subject to

\[F_X(\cdot) \in \mathcal{F} \cap \mathcal{D},\]
\[E[\rho X] \leq x_0\]

- \(u(\cdot)\): utility function;
- \(T(\cdot)\): distortion function
- \(\mathcal{F}\) is the set of distribution functions consistent with tame portfolios
 \(\mathcal{F} = \{F(\cdot) : \mathbb{R} \rightarrow [0, 1] \mid F(\cdot) \text{ is increasing, càdlàg and } F(c) = 0 \text{ for some } c \in \mathbb{R}\}\)
- \(\mathcal{D}\) is a subset of \(\mathcal{F}\), specifying the constraints imposed on the terminal payoff
- Both preference and constraints (other than the initial budget constraint) are law-invariant
Examples

- Expected Utility:

\[\int_0^\infty u(x)dF_X(x) \]
Examples

- Expected Utility:
 \[\int_0^\infty u(x) \, dF_X(x) \]

- Goal Achieving:
 \[\int_0^\infty 1_{\{x \geq b\}} \, dF_X(x) \]
Examples

- **Expected Utility:**
 \[\int_{0}^{\infty} u(x) dF_X(x) \]

- **Goal Achieving:**
 \[\int_{0}^{\infty} 1_{\{x \geq b\}} dF_X(x) \]

- **Yaari:**
 \[\int_{0}^{\infty} xd[-T(1 - F_X(x))] \]
Examples

- **Expected Utility:**
 \[\int_0^\infty u(x) dF_X(x) \]

- **Goal Achieving:**
 \[\int_0^\infty 1_{\{x \geq b\}} dF_X(x) \]

- **Yaari:**
 \[\int_0^\infty x d[-T(1 - F_X(x))] \]

- **SP/A:**
 \[\int_0^\infty x d[-T(1 - F_X(x))] \]
Examples

- **Expected Utility:**
 \[\int_{0}^{\infty} u(x) dF_X(x) \]

- **Goal Achieving:**
 \[\int_{0}^{\infty} 1_{\{x \geq b\}} dF_X(x) \]

- **Yaari:**
 \[\int_{0}^{\infty} xd [-T (1 - F_X(x))] \]

- **SP/A:**
 \[\int_{0}^{\infty} xd [-T (1 - F_X(x))] \]

- **Prospect Theory:**
 \[\int_{B}^{\infty} u_+(x - B) d [-T_+ (1 - F_X(x))] - \int_{-\infty}^{B} u_- (B - x) d [T_- (F_X(x))] \]
The portfolio selection problem

$$\max_X V(X) := \int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x)) \right]$$

Subject to

$$F_X(\cdot) \in \mathbb{F} \cap \mathbb{D},$$

$$E[\rho X] \leq x_0$$
Change the Decision Variable

- The portfolio selection problem

\[
\max_X V(X) := \int_{-\infty}^{\infty} u(x) d\left[-T(1 - F_X(x))\right]
\]

Subject to \(F_X(\cdot) \in F \cap D, \)
\(E[\rho X] \leq x_0 \)

- The major difficulty comes from the distortion function
The portfolio selection problem

\[
\text{Max } V(X) := \int_{-\infty}^{\infty} u(x) d\left[-T(1 - F_X(x))\right]
\]

Subject to \(F_X(\cdot) \in \mathcal{F} \cap \mathcal{D}, \)
\(E[\rho X] \leq x_0 \)

The major difficulty comes from the distortion function

Change of variable \(z = F_X(x) \)

\[
\int_{-\infty}^{\infty} u(x) d\left[-T(1 - F_X(x))\right] = \int_{0}^{1} u\left(F_X^{-1}(z)\right) T'(1 - z) dz
\]

\[
= E\left[u(F_X^{-1}(Z))T'(1 - Z)\right]
\]

where \(Z \sim U(0, 1) \)
The portfolio selection problem

\[
\begin{align*}
\text{Max} & \quad V(X) := \int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x)) \right] \\
\text{Subject to} & \quad F_X(\cdot) \in \mathcal{F} \cap \mathcal{D}, \\
& \quad E[\rho X] \leq x_0
\end{align*}
\]

The major difficulty comes from the distortion function

Change of variable \(z = F_X(x) \)

\[
\int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x)) \right] = \int_{0}^{1} u \left(F_X^{-1}(z) \right) T'(1 - z) dz \\
= E \left[u(F_X^{-1}(Z))T'(1 - Z) \right]
\]

where \(Z \sim U(0, 1) \)

If we regard \(F_X^{-1}(\cdot) \) as the variable, the distortion function is separated and we restore the concavity if \(u(\cdot) \) is concave
This suggests that it is better to regard the *quantile function* $F_X^{-1}(\cdot)$ as the decision variable. It works in the objective function
This suggests that it is better to regard the quantile function $F_X^{-1}(\cdot)$ as the decision variable. It works in the objective function.

It also works in the constraints

\[
F_X(\cdot) \in F \cap D \iff F_X^{-1}(\cdot) \in G \cap M
\]

where

\[
G := \{G(\cdot) : (0, 1) \to \mathbb{R} \mid G(\cdot) \text{ is increasing, càdlàg and } G(0+) > -\infty\}
\]

and M is a subset of G
This suggests that it is better to regard the quantile function $F_X^{-1}(\cdot)$ as the decision variable. It works in the objective function.

It also works in the constraints

$$F_X(\cdot) \in F \cap D \iff F_X^{-1}(\cdot) \in G \cap M$$

where

$$G := \{ G(\cdot) : (0, 1) \rightarrow \mathbb{R} | G(\cdot) \text{ is increasing, càglàd and } G(0+) > -\infty \}$$

and M is a subset of G.

It, however, does not work in the budget constraint

$$E[\rho X] \leq x_0$$
A dual argument is applied to dealing with the budget constraint
A dual argument is applied to dealing with the budget constraint

Primal: to maximise the performance of the investment
A dual argument is applied to dealing with the budget constraint

Primal: to maximise the performance of the investment

Dual: to minimise the cost (budget) while keeping the performance at some level
A dual argument is applied to dealing with the budget constraint

Primal: to maximise the performance of the investment

Dual: to minimise the cost (budget) while keeping the performance at some level

The performance only depends on the distribution of the terminal payoff, thus the dual problem is to minimise the cost of replicating the terminal payoffs following a given distribution
A dual argument is applied to dealing with the budget constraint

Primal: to maximise the performance of the investment

Dual: to minimise the cost (budget) while keeping the performance at some level

The performance only depends on the distribution of the terminal payoff, thus the dual problem is to minimise the cost of replicating the terminal payoffs following a given distribution

Given a distribution function $F(\cdot)$, formulate the following dual problem

\[
\text{Min} \quad E[\rho X] \\
\text{Subject to} \quad X \text{ is } F(\cdot) \text{ distributed}
\]
Lemma (Jin and Zhou 2008)

If ρ has no atom, then $Z := 1 - F_\rho(\rho)$ is uniformly distributed and $E[\rho F^{-1}(Z)] \leq E[\rho X]$ for any $F(\cdot)$ distributed r.v. X. Moreover, if $E[\rho F^{-1}(Z)] < \infty$, then the inequality is equality iff $X = F^{-1}(Z)$.

- $X = F^{-1}(Z) = F^{-1}(1 - F_\rho(\rho))$, where $Z \sim U(0,1)$, uniquely solves the dual problem.
Lemma (Jin and Zhou 2008)

If \(\rho \) has no atom, then \(Z := 1 - F_\rho(\rho) \) is uniformly distributed and
\[
E \left[\rho F^{-1}(Z) \right] \leq E \left[\rho X \right] \text{ for any } F(\cdot) \text{ distributed r.v. } X.
\]
Moreover, if \(E \left[\rho F^{-1}(Z) \right] < \infty \), then the inequality is equality iff \(X = F^{-1}(Z) \).

- \(X = F^{-1}(Z) = F^{-1}(1 - F_\rho(\rho)) \), where \(Z \sim U(0, 1) \), uniquely solves the dual problem.
- The assumption \(\rho \) is atomless is crucial and we will assume it in the following context.
Lemma (Jin and Zhou 2008)

If ρ has no atom, then $Z := 1 - F_{\rho}(\rho)$ is uniformly distributed and

$$ E[\rho F^{-1}(Z)] \leq E[\rho X] $$

for any $F(\cdot)$ distributed r.v. X. Moreover, if $E[\rho F^{-1}(Z)] < \infty$, then the inequality is equality iff $X = F^{-1}(Z)$

- $X = F^{-1}(Z) = F^{-1}(1 - F_{\rho}(\rho))$, where $Z \sim U(0,1)$, uniquely solves the dual problem
- The assumption ρ is atomless is crucial and we will assume it in the following context
- This dual problem dates back to Dybvig (1988) and is revived in Jin and Zhou (2008)
We only need to consider the terminal payoff in the form of $F^{-1}(Z)$ where $Z = 1 - F_\rho(\rho)$
We only need to consider the terminal payoff in the form of $F^{-1}(Z)$ where $Z = 1 - F_{\rho}(\rho)$

Rewrite the budget constraint

\[
x \geq E \left[\rho F^{-1}(Z) \right] \\
= E \left[F_{\rho}^{-1}(1 - Z)F^{-1}(Z) \right] \quad (F_{\rho}^{-1}(F_{\rho}(\rho)) = \rho, \ a.s.) \\
= \int_{0}^{1} F_{\rho}^{-1}(1 - z)F^{-1}(z)dz
\]
Recall the portfolio selection problem

\[
\begin{align*}
\text{Max } & \quad V(X) := \int_{-\infty}^{\infty} u(x) d \left[-T(1 - F_X(x)) \right] \\
\text{Subject to } & \quad F_X(\cdot) \in \mathbb{F} \cap \mathbb{D}, \\
& \quad E[\rho X] \leq x_0
\end{align*}
\]
Recall the portfolio selection problem

$$\max_X V(X) := \int_{-\infty}^{\infty} u(x) d\left[-T(1 - F_X(x))\right]$$

Subject to

$$F_X(\cdot) \in F \cap D,$$

$$E[\rho X] \leq x_0$$

Let $$G(\cdot) := F^{-1}(\cdot)$$

$$\max_{G(\cdot)} U(G(\cdot)) := \int_0^1 u(G(z)) T'(1 - z) dz$$

Subject to

$$G(\cdot) \in G \cap M,$$

$$\int_0^1 F_\rho^{-1}(1 - z) G(z) dz \leq x_0$$
Recall the portfolio selection problem

\[
\begin{align*}
\max_X & \quad V(X) := \int_{-\infty}^{\infty} u(x) d\left[-T(1 - F_X(x))\right] \\
\text{Subject to} & \quad F_X(\cdot) \in \mathbb{F} \cap \mathbb{D}, \\
& \quad E[\rho X] \leq x_0
\end{align*}
\]

Let \(G(\cdot) := F^{-1}(\cdot) \)

\[
\begin{align*}
\max_{G(\cdot)} & \quad U(G(\cdot)) := \int_0^1 u(G(z)) T'(1 - z) dz \\
\text{Subject to} & \quad G(\cdot) \in \mathbb{G} \cap \mathbb{M}, \\
& \quad \int_0^1 F^{-1}_\rho(1 - z) G(z) dz \leq x_0
\end{align*}
\]

We call it \textit{quantile formulation}
If X^* is optimal to the portfolio selection problem, then $F_{X^*}^{-1}(\cdot)$ is optimal to the quantile formulation.
If X^* is optimal to the portfolio selection problem, then $F_{X^*}^{-1}(\cdot)$ is optimal to the quantile formulation.

If $G^*(\cdot)$ is optimal to the quantile formulation, then $G^*(Z) = G^*(1 - F_\rho(\rho))$ is optimal to the portfolio selection problem.
If X^* is optimal to the portfolio selection problem, then $F_{X^*}^{-1}(\cdot)$ is optimal to the quantile formulation.

If $G^*(\cdot)$ is optimal to the quantile formulation, then $G^*(Z) = G^*(1 - F_\rho(\rho))$ is optimal to the portfolio selection problem.

The optimal solution to the portfolio selection problem must be anti-comonotonic w.r.t the pricing kernel ρ.
If X^* is optimal to the portfolio selection problem, then $F_{X^*}^{-1}(\cdot)$ is optimal to the quantile formulation.

If $G^*(\cdot)$ is optimal to the quantile formulation, then $G^*(Z) = G^*(1 - F_\rho(\rho))$ is optimal to the portfolio selection problem.

The optimal solution to the portfolio selection problem must be *anti-comonotonic* w.r.t the pricing kernel ρ.

Solvable by Lagrange.
Quantile formulation (Cont’d)

- If X^* is optimal to the portfolio selection problem, then $F_{X^*}^{-1}(\cdot)$ is optimal to the quantile formulation.

- If $G^*(\cdot)$ is optimal to the quantile formulation, then $G^*(Z) = G^*(1 - F_\rho(\rho))$ is optimal to the portfolio selection problem.

- The optimal solution to the portfolio selection problem must be \textit{anti-comonotonic} w.r.t. the pricing kernel ρ.

- Solvable by Lagrange.

- All the aforementioned examples can be solved explicitly.
Motivated by behavioural finance, we formulate a general non-expected utility maximisation problem that covers many models (rational or irrational).
Motivated by behavioural finance, we formulate a general non-expected utility maximisation problem that covers many models (rational or irrational).

We turn the problem into an equivalent optimisation problem — quantile formulation where quantiles serve as the decision variable.
Motivated by behavioural finance, we formulate a general non-expected utility maximisation problem that covers many models (rational or irrational).

We turn the problem into an equivalent optimisation problem — quantile formulation where quantiles serve as the decision variable.

The key is a dual argument in which we minimise the cost while keeping the performance.
Motivated by behavioural finance, we formulate a general non-expected utility maximisation problem that covers many models (rational or irrational). We turn the problem into an equivalent optimisation problem — quantile formulation where quantiles serve as the decision variable. The key is a dual argument in which we minimise the cost while keeping the performance. The problem can be solved by Lagrange.
Motivated by behavioural finance, we formulate a general non-expected utility maximisation problem that covers many models (rational or irrational).

We turn the problem into an equivalent optimisation problem — quantile formulation where quantiles serve as the decision variable.

The key is a dual argument in which we minimise the cost while keeping the performance.

The problem can be solved by Lagrange.

Incomplete market case can also be dealt with and mutual fund theorem is derived.
Conclusions

- The idea of quantile formulation works far beyond our specific non-expected utility model.
Conclusions

- The idea of quantile formulation works far beyond our specific non-expected utility model.
- It essentially only needs the following two assumptions.
Conclusions

- The idea of quantile formulation works far beyond our specific non-expected utility model.
- It essentially only needs the following two assumptions:
 - Preference and constraints (other than budget constraint) of the portfolio selection problem only depend on the distribution of the terminal payoff.
The idea of quantile formulation works far beyond our specific non-expected utility model.

It essentially only needs the following two assumptions:

- Preference and constraints (other than budget constraint) of the portfolio selection problem only depend on the distribution of the terminal payoff.
- The more money one starts with, the higher performance one achieves.
Conclusions

- The idea of quantile formulation works far beyond our specific non-expected utility model.
- It essentially only needs the following two assumptions:
 - Preference and constraints (other than budget constraint) of the portfolio selection problem only depend on the distribution of the terminal payoff.
 - The more money one starts with, the higher performance one achieves.
- The quantile formulation can be applied to all the aforementioned models.
The idea of quantile formulation works far beyond our specific non-expected utility model. It essentially only needs the following two assumptions:

- Preference and constraints (other than budget constraint) of the portfolio selection problem only depend on the distribution of the terminal payoff.
- The more money one starts with, the higher performance one achieves.

The quantile formulation can be applied to all the aforementioned models.

Prospect theory has been solved in Jin and Zhou (2008).
Conclusions

- The idea of quantile formulation works far beyond our specific non-expected utility model.
- It essentially only needs the following two assumptions:
 - Preference and constraints (other than budget constraint) of the portfolio selection problem only depend on the distribution of the terminal payoff.
 - The more money one starts with, the higher performance one achieves.
- The quantile formulation can be applied to all the aforementioned models.
- Prospect theory has been solved in Jin and Zhou (2008).
- SP/A model and model with law-invariant coherent risk measure have been solved by He and Zhou recently.