Capacity Analysis

Undersea Fiber Network

The secret world of submarine cables
Capacity Analysis

• Deterministic Model
 – Assume: each HTTP request takes T_r (request time)
 – and requests arrive at a known time sequence: A_s
 – What is service time per request, T_s

• No conflicts:

\[T_r = 1/2 \]
\[A_s: 0, 1, 2, 3, \ldots \]
(no conflicts)
\[T_s = 1/2 \]
Sequenced with conflict:

• **Round Robin:**
 - Request 1 arrives at 0, works ‘till 0.25., waits ‘till .5 works ‘till .75 then ends
 - Request 2 arrives at .25, works ‘till 0.5., waits ‘till .75 works ‘till 1.0 then ends

 \[T_s = \frac{(0.75 + 0.75)}{2} = 6/8 \]

• **First-come-first-serve**

 \[T_r = \frac{1}{2} \]

 \[A_s: 0,.25, 1., 1.25,… \]

 (same # requests, sequenced differently)

 \[T_s = \frac{(0.5 + 0.75)}{2} = 5/8 \]
Observations

• If server is handling a single page, then deterministic service times is reasonable, otherwise NOT

• The long term behavior depends on the arrival sequence, A_s, AND the service rate, T_s

• F-C-F-S is a lower bound on the round robin
Probabilistic Model (F-C-F-S)

• Let inter arrival time and the service times be:
 – independent, identically distributed (iid) random variables having an exponential distribution (denoted by M)
 – a r.v. X has an exponential density iff:
 • $f(x) = \alpha e^{-\alpha x}$ $x > 0$

 So $P_{\text{rob}}\{ X \leq x \} = 1 - e^{-\alpha x}$ $x \geq 0$

 $P_{\text{rob}}\{ X > x \} = e^{-\alpha x}$ $x \geq 0$

 $E(X) = 1/\alpha$

 $\text{var}(X) = 1/\alpha^2$
Assume server has been running for a while and reached steady state

Arrival Rates

States

Service rates

• In steady state (prob. of being in state \(j \), \(j \) waiting to be served): \(P_j \lambda_j = P_{j+1} \mu_{j+1} \)

or \(P_{j+1} = P_j (\lambda_j / \mu_{j+1}) \) (recursion relationship)

Specifically:

\[
P_1 = (\lambda_0 / \mu_1) P_0 \\
P_2 = (\lambda_1 / \mu_2) P_1 = (\lambda_1 / \mu_2) (\lambda_0 / \mu_1) P_0 \\
\vdots \\
P_{n+1} = (\lambda_n / \mu_{n+1}) P_n = ((\lambda_n \lambda_{n-1} \ldots \lambda_0)/(\mu_{n+1} \mu_n \ldots \mu_1)) P_0
\]

Let’s let: \(C_n = (\lambda_{n-1} \lambda_{n-2} \ldots \lambda_0)/(\mu_n \mu_{n-1} \ldots \mu_1) \), \(n = 1, 2, \ldots \)

Then the Steady State Probabilities are \(P_n = C_n P_0 \), \(n = 1, 2, \ldots \)
• What about P_0?

 – Since $\sum_{n=0}^{\infty} P_n = 1$, then $\sum_{n=0}^{\infty} C_n P_0 = 1$

 $$P_0 + \sum_{n=1}^{\infty} C_n P_0 = 1$$
 $$P_0 [1 + \sum_{n=1}^{\infty} C_n] = 1$$
 $$P_0 = 1 / [1 + \sum_{n=1}^{\infty} C_n]$$

 Now, the number of requests in the system, L

 $$L = 1 P_1 + 2 P_2 + 3 P_3 + ... = \sum_{n=0}^{\infty} (n P_n)$$

 Then the expected waiting time (likely time to be served),
 $$W = L / \lambda$$

 λ average arrival time
Simple case: M/M/1/FCFS/∞ /∞

Now suppose \(\lambda_n = \lambda \), \(\mu_n = \mu \), \(n = 1, 2, 3, \ldots \)
then \(C_n = (\lambda^n / \mu^n) = (\lambda / \mu)^n \), \(n = 1, 2, 3, \ldots \)
let \(\rho = \lambda / \mu \)
then \(P_0 = 1 / (1 + \sum_{n=1}^{\infty} \rho^n) = 1 / \sum_{n=1}^{\infty} \rho^n \)
Now recall \(\sum_{n=1}^{\infty} x^n = (1 - x^{n+1}) / (1 - x) \) for any \(x \)
and if \(|x| < 1 \) \(\sum_{n=1}^{\infty} x^n = 1 / (1 - x) \)
We need to have \(\lambda < \mu \) or the system will blow up!
So \(\rho < 1 \)
Thus \(P_0 = 1 / (1 / (1 - \rho)) = 1 - \rho = 1 - (\lambda / \mu) \)
and \(P_n = \rho^n P_0 = \rho^n (1 - \rho) \), \(n = 1, 2, 3, \ldots \)
What about L (expected # of requests in queuing system)?

$L = \sum_{n=1}^{\infty} n P_n = \sum_{n=1}^{\infty} n (1-\rho) \rho^n$

$= (1-\rho) \sum_{n=1}^{\infty} n \rho^n$

Now a little trick: Observe that $n \rho^n = n \rho \rho^{n-1}$

So $L = (1-\rho) \rho \sum_{n=1}^{\infty} n \rho^{n-1}$

Why bother? Because $n \rho^{n-1}$ should be familiar. In particular $d/d\rho (\rho^n) = n \rho^{n-1}$

Thus $L = (1-\rho) \rho \sum_{n=1}^{\infty} d/d\rho (\rho^n) = (1-\rho) \rho \frac{d}{d\rho} \left(\sum_{n=1}^{\infty} (\rho^n) \right)$

$= (1-\rho) \rho \frac{d}{d\rho} \left(\sum_{n=1}^{\infty} (\rho^n) \right)$ but $d/d\rho (\sum_{n=1}^{\infty} (\rho^n))$ is a geometric series

$= (1-\rho) \rho \frac{d}{d\rho} \left(1-\rho \right)^{-1}$ but $\frac{d}{d\rho} \left(1-\rho \right)^{-1} = -1(1-\rho)^{-2}$ (-1)

So $L = \rho (1-\rho)^{-1}$ and we can show $L = \lambda (\mu - \lambda)^{-1}$

and expected time in system $W = L / \lambda = \lambda (\mu - \lambda)^{-1} \lambda^{-1} = (\mu - \lambda)^{-1}$
More of M/M/1/FCFS/∞/∞ Queues

- $L_q =$ expected number of customers in line

 $L_q = 0 P_0 + \sum_{n=1}^{\infty} (n - 1) P_n = \sum_{n=1}^{\infty} (n P_n) - \sum_{n=1}^{\infty} (P_n)$

 $L_q = L - (1 - P_0) = L - \rho = \lambda^2 / (\mu (\mu - \lambda))$

- $L_s =$ expected number of customers in service

 $L_s = 0 P_0 + \sum_{n=1}^{\infty} 1 P_n = 1 - P_0 = 1 - (1 - \rho) = \rho = \lambda / \mu$

- $W_q =$ expected time of customer spends in line

 $W_q = L_q / \lambda = \lambda / (\mu (\mu - \lambda))$

- $W_s =$ expected time of customer spends in service

 $W_s = L_s / \lambda = 1 / \mu$
What about multiple processors:

\[C_n = (\lambda_{n-1}\lambda_{n-2} \ldots \lambda_0)/(\mu_n\mu_{n-1} \ldots \mu_1), \quad n = 1, 2, \ldots \]

We again let \(\lambda_n = \lambda \) for every \(n \)

Now assume that there are \(s \) processors.

So when \(n \leq s \) we have \(\mu_n = n\mu \), and when \(n > s \) we have \(\mu_n = s\mu \)

So \(C_n = \lambda^n/(\mu_n\mu_{n-1} \ldots \mu_1) \) \(C_n \) has \(s \) terms of \(n\mu \) and \(n-s \) terms of \(s\mu \)

Hence \(C_n = \lambda^n / (n! \mu^n) \) \(n \leq s \)

\[= \frac{\lambda^n}{(s!)(s^{n-s}) \mu^n} \quad n > s \]

If \(\lambda < s\mu \) as before we can show:

\[P_n = 1/ \left(\sum_{n=0, s-1} (1/n!) (\lambda/\mu)^n + (1/s!) (\lambda/\mu)^s (1 - (\lambda/(s\mu))) \right) \]
Finally: \(P_n = P_0 (\lambda / \mu)^n / (n!) \) \quad n \leq s
 = P_0 (\lambda / \mu)^n / ((s!) s^{n-s}) \quad n > s

\[
L = P_0 (\lambda / \mu)^s (\lambda / s \mu) / (s! ((1- \lambda / s \mu)^2)) + \lambda / \mu
\]

\[
W = P_0 (\lambda / \mu)^s (\lambda / s \mu) / (\lambda (s!) (1- (\lambda / s \mu))^2) + (1 + \lambda) / \mu
\]

Where \(s = \# \) processors
\(\lambda = \) arrival rates
\(\mu = \) processing rates
Realistic Server Performance

- Consider one server connected to the internet

Model each as a single server queue
Realistic Server Performance, cont.

Arrivals

- Assume:
 - File sizes are exponentially distributed
 - Service rate of browser and Internet are exponentially distributed

- Parameters:
 - Arrival rate
 - Mean file size (5275 bytes)
 - Initialization time (independent of size)
 - Bandwidth @ Server ($T_1 = 1.5 \text{ Mbit/s}$, $T_3 = 6\text{Mbit/s}$)
 - Bandwidth @ Client (700Kbit/s)
More Complicated Model

Arrivals

Departures

- Load balancing strategies (above not very smart)